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Abstract

Reduced representation genome-sequencing approaches based on restriction digestion

are enabling large-scale marker generation and facilitating genomic studies in a wide

range of model and nonmodel systems. However, sampling chromosomes based on

restriction digestion may introduce a bias in allele frequency estimation due to

polymorphisms in restriction sites. To explore the effects of this nonrandom sampling

and its sensitivity to different evolutionary parameters, we developed a coalescent-

simulation framework to mimic the biased recovery of chromosomes in restriction-

based short-read sequencing experiments (RADseq). We analysed simulated DNA

sequence datasets and compared known values from simulations with those that

would be estimated using a RADseq approach from the same samples. We compare

these ‘true’ and ‘estimated’ values of commonly used summary statistics, p, hw,
Tajima’s D and FST. We show that loci with missing haplotypes have estimated

summary statistic values that can deviate dramatically from true values and are also

enriched for particular genealogical histories. These biases are sensitive to nonequilib-

rium demography, such as bottlenecks and population expansion. In silico digests with

102 completely sequenced Drosophila melanogaster genomes yielded results similar to

our findings from coalescent simulations. Though the potential of RADseq for marker

discovery and trait mapping in nonmodel systems remains undisputed, our results

urge caution when applying this technique to make population genetic inferences.
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Introduction

High-throughput sequencing technology has revolution-

ized evolutionary genetics, enabling biologists to gener-

ate massive amounts of genomic data to address

diverse questions in ecology and evolution. Impor-

tantly, new techniques allow high-throughput identifi-

cation of variable sites [e.g. single nucleotide

polymorphisms (SNPs)], even in species whose

genomes are prohibitively large for sequencing or for

which a reference genome is unavailable. In these situa-

tions, it is often preferable to eschew whole-genome

sequencing in favour of a reduced representation

approach that can be used to sample a fraction of the

genome across many individuals at the same loci. A

promising new technology, restriction-associated DNA

(RADseq), is becoming popular for reducing genomic

complexity in DNA libraries to sequence a small por-

tion of the genome across many individuals (reviewed

in Davey et al. 2011). Hundreds of indexed RAD

libraries can be easily and inexpensively constructed

and sequenced to characterize levels and patterns of

genetic variation throughout the genome, even for non-

model organisms. RADseq has already been employed

in studies of population structure and biogeography

(Emerson et al. 2010; Gompert et al. 2010; Hohenlohe

et al. 2010), allele frequency estimation (Van Tassell

et al. 2008), association studies (Parchman et al. 2012),
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genetic mapping (Baird et al. 2008; Andolfatto et al.

2011; Pfender et al. 2011), selection and introgression

(Hohenlohe et al. 2011; Gompert et al. 2012), and linkage

disequilibrium (Hohenlohe et al. 2012).

RADseq differs from other genome-sequencing

approaches in that DNA fragments for construction of a

library of sequences are generated by digesting

genomes with a restriction enzyme, as opposed to

random DNA shearing. Enzyme digestion results in

nonrandom cleavage that ensures primarily the same

regions are sampled across individuals. While powerful,

the RADseq approach may be affected by numerous,

largely uncharacterized biases. Potential problems aris-

ing from PCR bias in library construction, sequencing

errors and inaccurate genotyping with lower sequenc-

ing depths have been recognized previously (Rokas &

Abbot 2009), but these biases are expected to affect all

re-sequencing projects. RADseq has an additional

ascertainment bias whose effects have not been

explored extensively: some recognition sequences will

themselves be polymorphic, resulting in missing data

for some chromosomes, and thus nonrandom sampling

of lineages in a sample (Fig. 1).

How does nonrandomly missing data affect estima-

tion of levels and patterns of genomic variation neces-

sary for population genetic inference? Here, we address

this question by developing a coalescent-simulation

framework to mimic the biased recovery of haplotypes

(hereafter genealogical bias) in RAD libraries. Our work

is consistent with but extends beyond that of Gautier

et al. (2012) who also studied how missing data bias

estimates of expected heterozygosity and FST. We ana-

lyse our simulations with additional commonly used

summary statistics (p, h, Tajima’s D, FST and the com-

plete allele frequency spectrum) that are used to study

demographic history and detect selection. We explore

how RADseq affects genome-wide estimates of these

statistics and how it impacts outlier analyses.

We show that RADseq nonrandomly subsamples the

genome in two ways. First, within a locus, variants in a

recognition sequence result in missing data and there-

fore truncate genealogies relative to the complete

sample at these loci. This truncation results in underes-

timates of commonly used diversity statistics p and hw.
Estimates of Tajima’s D are also less accurate, but FST is

relatively robust. Second, certain genealogies are more

likely to result in missing haplotypes than others, such

that RADseq samples a biased subset of all genealogies.

For example, loci with intermediate amounts of missing

data are more polymorphic than the simulation average

and more likely have genealogies with deeper diver-

gences. We show with in silico digests of 102 completely

sequenced Drosophila melanogaster genomes that our coa-

lescent simulations capture the major features of RAD-

seq’s genealogical bias. We discuss our findings and

provide general guidelines for using RADseq for popu-

lation genetic inference.

Methods

Coalescent simulations

We used Hudson’s ms (Hudson 2002) to simulate 10 kb

DNA fragments for 100 haploid individuals with differ-

ent population mutation and recombination rates

(i.e. h = 4Nel and q = 4Ner, with l and r being the

Fig. 1 An example of a DNA sequence alignment (horizontal lines at right) along with the underlying genealogy of the locus (left).

Dots represent segregating mutations in the sequence and where in the genealogy they occurred. The wider grey portion of the

sequence alignment represents the recognition sequence and a white dot indicates a mutation in the recognition sequence. Haplo-

types are not observed in a recovery of chromosomes in restriction-based short-read sequencing experiment if mutations occur within

this region. In this example, the true time to most recent common ancestor (TMRCA) of the sample is lost since a mutation occurred

within the recognition sequence in the most divergent haplotype; the genealogy is thus truncated to point ‘X’ and results in incom-

plete sampling that is biased against recovery of the most divergent haplotype(s).
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mutation and recombination rates respectively). Three

values of h were used for simulations (0.0001, 0.001, or

0.01 per bp), with either q = 0 and h = q. We first simu-

lated a single population at demographic equilibrium

under each set of parameters above. To explore the

effect of demographic history on RADseq, we modelled

a bottleneck in which the population shrunk to 25% of

the original size for 0.1 Ne generations, 0.1 Ne genera-

tions before present, after which it recovered to its

original size. We also modelled an exponential growth

scenario in which the population grows exponentially

from 10% of its present-day size over 0.2 Ne genera-

tions. Simulations were repeated 100 000 times for each

parameter set.

To explore the ability of RADseq to effectively detect

population subdivision using a common metric of

genetic differentiation (FST), we simulated two popula-

tions at demographic equilibrium that exchange

migrants at a constant rate per generation. We simu-

lated varying levels of population structure with 50

haploid individuals, or chromosomes, per population

with migration rates (Nm) of 10, 1 or 0.1, and

h = q = 0.01 per bp.

In silico RADseq experiment

Using custom Perl scripts, we performed an in silico

digest by searching these simulated fragments for a spe-

cific recognition sequence. Since Hudson’s ms (Hudson

2002) models DNA sequences with zeroes and ones, we

used recognition sequences consisting of 12 zeroes and

ones. Assuming equal nucleotide base composition, this

motif occurs as frequently as a six-base DNA restriction

enzyme site (about 2.8 times per 10 kb). Fragments that

contained no recognition sequences were not analysed.

After the in silico digest, we analysed the sequence

100 bp to the right of each recognition sequence to

model the standard RADseq protocol (Baird et al. 2008).

This length was chosen because it is currently a com-

monly used read length in Illumina sequencing. We

compared ‘true’ summary statistic values (before digest)

with ‘estimated’ ones (after digest, using only chromo-

somes that would have been recovered in a RADseq

experiment). Here, we focus exclusively on biases

induced by restriction site polymorphism, which

ignores other potential sources of bias arising from

sequencing and alignment, such as other sources of

nonrandom sampling of haplotypes, sequencing errors

and reference bias (reviewed in Rokas & Abbot 2009;

Pool et al. 2010). These are expected to be general issues

for most or all re-sequencing projects and are not

addressed here.

Our simulation framework models the biased recov-

ery of haplotypes in the RADseq protocol due to

restriction site polymorphism. At a particular locus, a

chromosome may not be sampled for two reasons: (i) a

cut site, which is polymorphic in the population, is not

present on that chromosome or (ii) a recognition

sequence is present within 100 bp to the right of

another recognition sequence, resulting in a fragment

that is removed in the size-selection step and thus not

sampled. As a result, the number of chromosomes sam-

pled to the right of a particular recognition sequence,

hereafter referred to as ‘chromosome sampling depth,’

varies among loci and may be less than the total 100

simulated DNA sequences. To demonstrate the effect of

missing data due to the RADseq protocol, in the results

below, we either binned loci by chromosome sampling

depth or imposed cutoffs such that only loci with at

least a minimum number of sampled chromosomes are

analysed.

After the in silico digest of each fragment, we calcu-

lated the allele-frequency spectrum (AFS) for the 100 bp

to the right of each recognition sequence using all simu-

lated chromosomes (the ‘true’ AFS). We also calculated

the AFS using only chromosomes that have the correct

recognition sequence and would therefore be sampled

by a RADseq protocol (the ‘estimated’ AFS). We then

used these to calculate typical summaries of the data

such as average number of pairwise differences (p,
Tajima 1983), Watterson’s h (hw, Watterson 1975), Tajima’s

D (Tajima 1989) and FST (Weir & Cockerham 1984). As

above, the true values for these summary statistics

(pt, hwt, Dt) were calculated using all chromosomes at

the locus, and estimated values (pe, hwe, De) were

calculated only for chromosomes that would be

sampled in a RADseq experiment.

For the simulations with population subdivision, for

any one locus, chromosomes are sampled according to

criteria described above to mimic the RADseq protocol.

FST can be inflated when one population has greater

sampling depth, which may occur if a recognition-site

mutation rises to a higher frequency in one population

than the other, and this may confound inferences based

on FST. Thus, for our analyses, we condition on sample

sizes being the same for both populations to avoid these

artefacts that inflate estimates of FST.

Double digest RADseq

We modified our framework to explore how summary

statistics are affected by another RADseq protocol

recently developed by Peterson et al. (2012), which

relies on double digests. Briefly, this method requires

first digesting the genome with two restriction enzymes

and then selecting those fragments that fall within a

defined size interval. We mimicked this process by

sampling only fragments that were flanked by the same

© 2013 Blackwell Publishing Ltd
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two complete recognition sequences of 6 zeroes and

ones that were either within 150–250 or 350–450 bps of

each other. The length of the restriction sequence was

chosen to make the overall size of the mutational target

associated with each chromosome at a locus the same

as the standard RADseq protocol mentioned above. We

further required that no additional cut sites be present

in between that cause the fragment to be shorter than

the selected size. We then sampled the 100 bp immedi-

ately adjacent to the left recognition sequence and anal-

ysed this as described above for the standard RADseq

method. Although a double digest would normally

involve sampling fragments flanked by two distinct rec-

ognition sequences, we only use a single recognition

sequence for this in silico digest (repeated twice). How-

ever, since the sampling properties are the same for any

arbitrary sequence of a specified length, we still refer to

this modified framework as a ‘double digest.’ All analy-

ses presented for the double digest protocol used the

size selection with shorter fragments (150–250 bps)

unless otherwise stated.

Empirical confirmation with Drosophila melanogaster

To confirm whether the predictions of our simulation

framework reflect biases that could arise in an actual

RADseq experiment, we performed in silico digests of

102 fully sequenced hemizygous (i.e. only one chromo-

some is sampled) D. melanogaster individuals (Pool et al.

2012). We acquired genome assemblies in fastq format

from www.dpgp.org and subsequently translated these

to fasta format requiring a minimum nominal base

quality of 30. We masked regions of putative identity-

by-descent, described in Pool et al. (2012), using the

conversion/masking script provided by www.dpgp.org.

We selected three different recognition sequences repre-

senting distinct base compositions, AseI (TAATTA),

EcoRI (GAATTC) and EagI (GCCGGC), to digest the

assemblies in silico. Digests were performed as described

above for coalescent simulations mimicking the standard

RADseq protocol (Baird et al. 2008). In brief, we digested

each genome with a specific recognition sequence and

considered that chromosome to be sampled if there was

not an additional recognition sequence within 100 bp to

the right. In cases where there was missing data in the

recognition sequence (i.e. due to masked low-quality

base calls, and not due to high-quality variants in the

recognition site), we excluded those chromosomes from

calculations of both true and estimated p. Each recogni-

tion site with at least one observed chromosome was

considered for downstream analysis if at least 100 of the

chromosomes in the original genome assemblies were

covered by quality 30 or greater sequence through the

entire region spanned by the recognition sequence.

Results

RADseq underestimates polymorphism

We generated simulated datasets for 100 haploid indi-

viduals and analysed them mimicking a RADseq proto-

col (see Methods for details). In comparing ‘true’ values

of summary statistics (pt, hwt, Dt) with ‘estimated’ val-

ues (pe, hwe, De, calculated from the data using only

chromosomes that would be sampled by RADseq), it is

apparent that the RADseq protocol results in systematic

underestimation of polymorphism (Fig. 2A). Not sur-

prisingly, increasing amounts of missing data exacer-

bates this bias, and there is a strong positive correlation

between chromosome sampling depth and estimates of

polymorphism (Fig. 2A). Fortunately, a majority of loci

have all chromosomes sampled, especially for lower

parameter values of h in the simulations (Fig. 2B). We

found that pt is more sensitive to missing data than hwt.

Recombination decreases this sensitivity and brings val-

ues of both pt and hwt closer to the simulation parame-

ter value of h (Fig. S1, Supporting information). The

difference between estimated and true values is greater

for loci from simulated data sets with higher input val-

ues of h (Fig. S2, Supporting information), though

increasing the recombination rate tends to decrease this

difference. This is because recombination decreases cor-

relations between variants in the recognition sequence

and those in the flanking sequence.

Simulations of the double-digest RADseq protocol

(Peterson et al. 2012) produce similar results. However,

relative to the standard RADseq protocol, loci that have

higher chromosome sampling depths are less frequent

in the double-digest protocol (Fig. S3, Supporting infor-

mation) and have true and estimated values of p and

hw that are even lower than simulation averages (Fig.

S4, Supporting information). As in the standard RAD-

seq protocol, a lower population mutation rate mitigates

this effect (Fig. S5, Supporting information).

Although by definition, true and estimated summary

statistics are identical when all chromosomes are sam-

pled, loci with complete data still tend to have lower

polymorphism than simulation averages (Table 1,

Fig. 2, Fig. S2, Supporting information), particularly for

the double-digest protocol (Table 1, Figs S4 and S5,

Supporting information). This bias is exacerbated in the

double-digest simulation when longer fragments were

selected (350–450 instead of 150–250 bps). Thus, while

completely sampled loci are not biased individually,

they will not capture the true genome-wide distribution

of values. For simulations with higher polymorphism

and no recombination, estimates of means and vari-

ances are further reduced below true simulation

averages.

© 2013 Blackwell Publishing Ltd
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Chromosome sampling depth is correlated with
particular genealogies

Since the underlying genealogy of a sample of chromo-

somes at a locus provides information about its evolu-

tionary history, we examined how genealogies vary

with chromosome sampling depth using the AFS. The

true AFS present in the sequence flanking a restriction

site, conditioning on the chromosome sampling depth

recovered in a RADseq experiment, shows that each

respective sampling depth has a unique AFS and thus

contains a nonrandom subset of the ‘true’ genealogies

(Fig. 3A). Although recombination reduces this effect, a

strong correlation between the frequencies of polymor-

phisms within a read and frequencies of the recognition

sequence remains apparent in the AFS (Fig. 3B). This is

consistent with empirical observations of significant LD

on the scale of a 100-bp sequencing read observed in

many natural populations (e.g. Miyashita & Langley

1988; Hohenlohe et al. 2012; Langley et al. 2012; Pool

et al. 2012). Lastly, in agreement with their higher val-

ues of pt, loci with intermediate amounts of missing

data in a RADseq experiment have genealogies with a

greater time to common ancestry (TMRCA’s, not shown)

relative to the simulation average.
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Fig. 2 (A) True and estimated values of p (red) and hw (blue) from in silico recovery of chromosomes in restriction-based short-read

sequencing (RAD)seq as a function of chromosome sampling depth for h = 0.01 per bp without recombination. Here, the simulation

average of h is 1 per 100 bp sequence read. Shaded regions show the 95% bootstrap percentile confidence intervals (1000 simulations)

for the mean of true values of p (solid red) and hw (solid blue) and estimated values of p (shaded red) and hw (shaded blue) from in

silico RADseq. ‘Chromosome sampling depth’ refers to the number of chromosomes that are actually sampled (have intact restriction

sites) in the in silico experiment, and ‘true’ values are those calculated using the complete data for the same markers. The histograms

in A (no recombination) and B (with recombination, q = h) show the proportion of each chromosome sampling depth in the data and

indicate that most markers are highly sampled with these simulation parameters, especially for lower values of h (B).

Table 1 Comparison of estimated values of summary statistics (hwe or pe) when all chromosomes are sampled to true simulation

averages (hwa or pa)

Protocol h per bp

Mean Variance

Recombination No recombination Recombination No recombination

hwe/hwa pe/pa hwe/hwa pe/pa hwe/hwa pe/pa hwe/hwa pe/pa

Standard 0.0001 0.994 0.995 0.991 0.990 0.994 0.996 0.990 0.990

0.001 0.987 0.982 0.988 0.984 0.988 0.980 0.988 0.979

0.01 0.956 0.933 0.940 0.909 0.941 0.901 0.904 0.837

Double digest 0.0001 0.835 0.836 0.838 0.837 0.836 0.836 0.839 0.836

0.001 0.858 0.851 0.829 0.823 0.857 0.841 0.830 0.815

0.01 0.829 0.797 0.811 0.772 0.812 0.737 0.771 0.684

Results from two different simulation parameters of h are shown. When recombination is present, q = h. Results are given for both

the standard and double digest RADseq protocols.

© 2013 Blackwell Publishing Ltd
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Nonequilibrium demography and population
subdivision affects true and estimated summary
statistics

Nonequilibrium demographic processes can affect the

AFS. Therefore, we asked what effect the introduction

of a RADseq capture method can have on estimates of

summary statistics for populations not at equilibrium.

To this end, we simulated data under two commonly

used demographic models: a population bottleneck and

exponential growth. For the standard RADseq protocol,

a population bottleneck followed by growth slightly

decreases the effect missing data has on estimating true

summary statistic values by slightly increasing the cor-

relation between estimated and true values of hw and D

(Fig. 4). However, bottlenecks have little effect on the

estimates of p. Exponential population growth greatly

reduces the sensitivity of p and hw to missing data and

causes loci at all sampling depths to have estimated val-

ues of summary statistics that more closely resemble

their true values (Fig. 4). Both of these scenarios miti-

gate the effect missing data has on estimation of sum-

mary statistics because effective population sizes are

reduced (relative to an equilibrium population of equal

present size), particularly for the exponential growth

model.

A common goal of population genetic analyses is to

detect and study population structure and differentia-

tion. To explore the effects of RADseq on a common

metric of genetic differentiation, FST, we simulated two

populations at demographic equilibrium that exchange

migrants at a constant rate per generation (described in

Methods, performed only for the standard RADseq pro-

tocol). Unlike the results for metrics that summarize the

AFS within a population, the distribution of estimated

FST for loci with all chromosomes sampled is nearly

identical to the true distribution (Fig. S6, Supporting

information) for effective migration rates of Nm = 10

and Nm = 1. This strong concordance breaks down

when populations exchange one migrant every 10 gen-

erations (Nm = 0.1; Fig. S6C, Supporting information).

Importantly, including loci with missing data biases the

estimated FST distribution, since missing data tends to

inflate estimates of FST (Fig. 5). This is consistent with

the results of Gautier et al. (2012) who considered biases

of RADseq using a slightly different population subdi-

vision demographic model.
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Fig. 3 Density plot of true allele frequency spectra (AFS) for

loci with different chromosome sampling depths (A) without

and (B) with recombination. Each row represents the AFS for a

particular chromosome sampling depth with the density of a

particular allele frequency indicated as a heat map. The Z score

fits a normal distribution to the entries in each row, and each

cell is coloured based on this fitting. This shows that loci with
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pling depth cutoff (i.e. with at least a minimum number of

chromosomes with intact recognition sequences).
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FST, hw, p and D outliers are sensitive to missing data

Although the levels and patterns of genetic variation in

neutral loci that are linked to locally adapted alleles

will depend on demographic and selective circum-

stances, it is interesting to consider outliers in the distri-

butions of summary statistics as potential metrics for

detecting positive selection and local adaptation. In par-

ticular, high FST may indicate that a locus is in linkage

disequilibrium with locally adapted alleles. However,

we show that missing data may inflate FST values, and

rates of false positives quickly increase as the chromo-

some sampling depth cutoff decreases, especially when

chromosome sample sizes amongst populations are

allowed to vary as little as 20% (Fig. 6). Thus, it may be

wise to constrain analyses to loci with complete chro-

mosome sampling, but of loci in the upper 5% tail of

true FST distribution, only 13%, 11% and 5% have com-

plete chromosome sampling in both populations for

Nm = 10, 1 and 0.1 respectively.

Within a population, genomic regions with low

nucleotide diversity and left-skewed site frequency

spectra may indicate the presence of a recent selective

sweep via the hitchhiking effect (Maynard-Smith &

Haigh 1974), or strong purifying selection (Charlesworth

et al. 1993). We explored the effect of missing data on

outlier analyses involving the commonly used diversity

statistics hw and p. Specifically, we examined the lower

5% tail of the distributions of these statistics to assess

how missing data affects false positive and false nega-

tive rates. Using different sampling depth cutoffs, rates

of false positives and false negatives increase with the

inclusion of loci with missing data for both the stan-

dard RADseq protocol (Fig. 7) and the double-digest

protocol (Fig. S7, Supporting information). Similar anal-

yses with lower values of h (0.001 per bp and lower)

were not possible since the 5% quantile of summary

statistics contained the majority of loci due to low levels

of polymorphism.

Since loci with missing data have more false positives

and negatives, a possible solution is to limit outlier

analyses to loci with complete chromosome sampling. If

outliers were evenly distributed across loci irrespective

of missing data, 5% of loci in each sampling depth cate-

gory would be outliers. However, in agreement with

the results presented in Table 1, loci with complete

sampling have slightly decreased diversity and are
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more likely to fall within the lower 5% tail of the true

distribution of p and hw and less likely to fall within

the upper 5% tail (Table 2). Thus, limiting analyses to

completely sampled sites may inadvertently enrich for

loci that have experienced recent positive selection or

are highly constrained by strong purifying selection.

In silico digestion of Drosophila melanogaster genomes

To test whether our framework captures the major

biases associated with RADseq, we performed in silico

digests of 102 recently released D. melanogaster genome

assemblies (Pool et al. 2012) using the standard RADseq

protocol (Baird et al. 2008). The choice of restriction

enzyme greatly affects which features of the genome

are sampled (Fig. 8A). The GC-rich recognition sequence

of EagI samples exons more frequently than loci

sampled at random and much more frequently than the

AT-rich AseI, which disproportionately samples intronic

and intergenic regions. EcoRI, which has an intermedi-

ate base composition, samples genomic regions at

frequencies similar to their abundance in the genome. It

is likely that owing to different levels of polymorphism

in different parts of the genome (e.g. due to stronger

purifying selection in exonic vs. intergenic sequences),

choice of restriction enzyme results in different esti-

mates of nucleotide diversity (Fig. 8B).

Similar to the simulation results, in regions of the

genome where pt is higher, it is more common for an

intermediate number of chromosomes to be sampled

(Fig. 8C), which is consistent with the results of our

simulations (above). This difference in pt between loci

with different chromosome sampling depths changes

depending on the recognition sequence of the restriction

enzyme used and increases as more polymorphic

regions of the D. melanogaster genome are sampled

(i.e. with an enzyme with an AT-rich recognition

sequence). Again, we observe similar patterns in our

simulation framework (above), suggesting that our

simulations accurately reflect much of the bias associ-

ated with RADseq.

To compare our framework to the D. melanogaster

data, we ran simulations with an increased recombina-

tion rate (q = 0.1 per bp, h = 0.01 per bp); q = 10*h has

been used previously in demographic inference of this

species (e.g. Thornton 2009). We then recorded the

median of the ratio expected to true p (pe/pt) for each

locus with a particular number of sampled chromo-

somes (Fig. 8D). While our simulation appears to accu-

rately model the majority of genealogical bias, we did

not perfectly capture the dynamics of loci that have <10
sampled chromosomes, perhaps as a result of violations

of the infinite sites mutation-model (see Discussion).

Discussion

RADseq provides a simple and inexpensive means of

collecting genome-wide sequence data from diverse

nonmodel organisms (e.g. Emerson et al. 2010; Hohen-

lohe et al. 2011; Gompert et al. 2012; Parchman et al.

2012). This approach is increasing in popularity as a

means of population genomic inference, but the effects

of the ascertainment bias associated with polymorphism

in recognition sites have not been extensively explored

(but see Gautier et al. 2012). Biases can arise from muta-

tions segregating in the recognition sequence such that

haplotypes are nonrandomly sampled for loci linked to

these polymorphisms. Though it may seem compara-

tively rare for a mutation to occur within a recognition

sequence, these variants are frequent enough to enable

detailed population genetic analyses (e.g. Restriction

Fragment Length Polymorphisms, Botstein et al. 1980).

Consequently, a thorough examination of RADseq bias

is essential for enabling detailed and accurate popula-

tion genetic analyses based on this methodology.

Our coalescent simulations model two separate RAD-

seq protocols (Baird et al. 2008; Peterson et al. 2012) and
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Fig. 7 Proportion of estimated p (grey), hw (light grey) or D

(black) outliers that are false positives (solid lines) or false neg-

atives (dashed lines) for inclusion in the lower 5% tail for dif-

ferent chromosome sampling depth cutoffs.

Table 2 Loci with complete sampling are more likely to fall

within the lower 5% tail of the true distribution of p and hw

Protocol Tail Ratio

Standard Lower tail 1.19 1.17

Upper tail 0.76 0.74

Double digest Lower tail 1.76 1.95

Upper tail 0.45 0.37

Shown are the ratios of the proportion of loci with complete

chromosome sampling depth that are true outliers to the

proportion of true outliers in the entire simulated data set.
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show that in both cases, true and estimated values of p
and hw vary with the amount of missing data that

would occur in a RADseq experiment. Loci with higher

pt and hwt generally have fewer sampled chromosomes.

These loci also have distinct frequency spectra and dee-

per divergence times. These patterns indicate that cer-

tain genealogies are particularly prone to missing data

in RADseq experiments. Both pe and hwe and their cor-

relations with true values decrease systematically as a

function of the chromosome sampling depth, making

loci with higher diversity the most strongly underesti-

mated. Tajima’s D is also sensitive to missing data. One

potential solution might be to limit analysis to loci for

which one can be certain of complete sampling. How-

ever, while this will reduce bias from sampling particu-

lar branches of the genealogy, it is important to

remember that loci where RADseq samples all chromo-

somes are also a nonrandom subset of genome-wide p
and hw distributions. Underestimated polymorphism

has been previously observed in RADseq but was

attributed to conservative SNP calling (Hohenlohe et al.

2010).

Loci with complete sampling for the double-digest

protocol have further decreased estimates of diversity

(compared to the true genome-wide estimate) than the

standard protocol because missing data may arise not

only from mutations within recognition sequences but

also from novel restriction sites that cause some haplo-

types to be outside of the size-selection range. Indeed,

this problem is exacerbated for the simulation in which

longer fragments were selected since there is a larger

region within which novel restriction sites may occur.

In reality, segregating insertions or deletions may also

contribute to missing data by changing the length of

sequences between cut sites to outside the range of size

selection, but this additional source of bias was not

modelled in this study.

Importantly, inclusion of loci with incomplete sam-

pling may actually invert relative estimates of p and h,
such that loci that are in reality more diverse will have

lower estimates for these parameters than loci with

complete sampling that are taken from less diverse

regions. In practice, for a particular locus with incom-

plete chromosome sapling depth, it may not be feasible

to determine if chromosomes were not sequenced from

polymorphism in the restriction site or from low

sequencing depth.

The correlations between estimated and true values

of summary statistics are also sensitive to nonequilibri-

um demography. Both population bottlenecks and
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Fig. 8 Results for the in silico digests 102 Drosophila melanogaster genomes. (A) Proportion of sites located in distinct regions of the

genome when in silico digests are performed with different enzyme recognition sequences. GC-rich recognition sequences sample

more exons, whereas AT-rich recognition sequences sample comparatively more introns and intergenic regions. ‘Random’ values are

calculated from fragments selected at random throughout the genome. (B) Box plots of true p for regions sampled by enzymes with

different recognition sequences. (C) The median true p (solid line) and estimated p (dashed line) as a function of chromosome sam-

pling depth for three different recognition sequences. (D) Median of the ratio of estimated p to true p as a function of the number of

sampled chromosomes. Dark blue, purple and cyan lines represent the three different restriction enzymes used in the in silico digest

of the D. melanogaster genomes, and the dotted black line is from simulations with q = 0.1 per bp, h = 0.01 per bp
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expansions increase correlations between true and esti-

mated values. The greater correlations presumably

occur because both demographic scenarios decrease the

effective population size and therefore reduce genetic

diversity, so fewer loci have missing data and thus

inaccurate estimates of summary statistics. Since natural

populations are likely to have complex evolutionary

histories, summary statistics may be affected by a com-

bination of multiple demographic events in addition to

the population mutation and recombination rates. Hav-

ing estimates of these parameters a priori for a given

study system help predict how frequently loci will con-

tain missing data and how sensitive estimated values of

summary statistics are to missing data.

We also explored the ability of RADseq datasets to

detect population structure and differentiation by calcu-

lating FST between two populations at demographic

equilibrium that exchange migrants at a constant rate

per generation.

The distribution of estimated FST values for loci with

all chromosomes sampled is very similar to the true

distribution. The relative robustness of FST to the RAD-

seq protocol suggests that this methodology is perhaps

well suited to estimating rates of migration between

populations.

Since outliers in the distributions of summary statis-

tics are frequently used as metrics for detecting selec-

tion, we explored the sensitivity of FST, hw, and p
outliers to missing data. We find that rates of false

positives and false negatives increase for FST, hw and p
as chromosome sampling depth decreases, since

missing data biases estimates. This has important impli-

cations for outlier analyses as tests for selection or local

differentiation and indicates that empirical outliers

obtained from RADseq experiments where complete

chromosome sampling cannot be established with

certainty should be interpreted with caution. Again, a

potential solution is to restrict analyses to loci with

complete chromosome sampling depth, but with this

correction, a vast majority of true FST outliers would be

missed since many true outliers have incomplete

sampling. Moreover, since many investigators sequence

diploid organisms, it may be difficult to quantify the

amount of missing data and the sample size variation

amongst populations, both of which would inflate

estimated FST values.

Our in silico RADseq analyses of 102 Drosophila mela-

nogaster genomes were largely consistent with the

results of our simulations, in that polymorphism is

underestimated, especially for more diverse genomic

regions. Although undoubtedly the populations from

which these samples are derived are experiencing

nonequilibrium selective and demographic processes

that we did not model (Corbett-Detig & Hartl 2012;

Pool et al. 2012), the overall congruence of our simula-

tions with the Drosophila data suggests that our basic

simulation framework captures the major biases that

affect RADseq. One possible explanation of the poor fit

of our model at low chromosome sampling depths is

that the real data includes violations of the infinite-

sites mutation model, such that mutations recur

within nascent recognition sequences on different

haplotypes. This would effectively inflate diversity

relative to infinite-sites assumptions of the coalescent

simulations. Nonetheless, it is clear that even though

our simulations are relatively simplistic, we have iden-

tified a major potential bias inherent to the RADseq

methodology.

The nucleotide composition of the recognition

sequence affects which features of the genome are sam-

pled and this suggests an appealing means of tuning

RADseq for the specific goals of each respective study.

For example, for the purpose of SNP discovery, one

may prefer to select an enzyme with an AT-rich recog-

nition sequence; conversely, if the goal is to study

genetic differentiation between divergent populations,

GC-rich recognition sequences will generally access a

higher proportion of conserved regions of the genome

and may increase the overlap in sampled loci between

populations. However, such choices must still be

considered with appropriate caveats, for instance, in

species with DNA-methylation, CG sites are known to

mutate at significantly higher rates than the genomic

average (Cooper et al. 1995). In this case, using an

enzyme which cuts sequences that contain these motifs

may increase the amount of missing data, and violate a

tacit assumption of our model that the per-site mutation

rate in the recognition sequence is identical to that in

the sequenced read. We thus emphasize that because

each restriction enzyme will access different genomic

regions, which may not have identical allele frequency

spectra, the choice of restriction enzyme will also affect

population genetic inferences.

Our results are also consistent with those of Gautier

et al. (2012), but our interpretation of how RADseq

affects estimates of diversity is different. In their study,

Gautier et al. state that RADseq results in overestimates

of heterozygosity because they only consider segregat-

ing sites that are observed after the in silico digest of

simulated fragments. This effect occurs because muta-

tions in linked recognition sequences are more to likely

arise on the major allele haplotype, thus inflating minor

allele frequencies and estimates of heterozygosity. Here,

we examine the effect that RADseq has on commonly

used diversity statistics per site and thus account for

both observed and unobserved segregating sites.

Because variants in a recognition sequence truncate

genealogies relative to the complete sample at these

© 2013 Blackwell Publishing Ltd
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loci, some true variants are not observed, overall result-

ing in underestimates of p and hw.
RADseq is an important emerging methodology, and

is likely to see increased use; it is therefore important to

identify biases and where possible to develop a means

of accounting for them. In general, the assumption of

identical per-site mutation rates in the cut-site and

sequenced read is likely to be reasonable. Given this

assumption, it may be possible to account for the genea-

logical bias of RADseq using our (or a similar) coales-

cent simulation modification framework. That is,

standard coalescent simulations can be performed, and

the resulting sequence digested and analysed as we

describe. If the resulting biased summary statistics are

then compared with empirically obtained RADseq sum-

mary statistics (e.g. using approximate Bayesian compu-

tation software such as ABCreg; Thornton 2009), it may

be possible both to directly account for this source of

bias in population genetic analyses and to recover unbi-

ased estimates of the true distributions of relevant sum-

mary statistics.

This study can serve as a useful guide for investiga-

tors using RADseq for population-genomic analyses.

From our simulations and empirical in silico digests,

loci with missing data give inaccurate estimates of

summary statistics and may increase the rate of false

positives in outlier analyses. Thus, identifying and

pruning loci with incomplete sampling will be impor-

tant in any RADseq experiment aimed at accurately

estimating commonly used summary statistics. Since

RADseq will generally produce thousands or tens of

thousands of markers throughout the genome, pruned

datasets that retain only loci with complete sampling

will still be substantial (Fig. 2). However, if RADseq is

to be used for demographic inference, it remains

important to recognize that ignoring loci with missing

data, which are enriched for particular genealogical

structures, will also affect estimation of evolutionary

parameters and may not accurately represent a ‘gen-

ome average’ value. If many loci have high sequencing

depths such that sites with missing data can easily be

detected by differences in coverage, RADseq provides a

powerful way to estimate genome-wide divergence

amongst populations to describe biogeographic pat-

terns. Thus, though our findings urge caution, with

careful consideration of experimental design, data use

and interpretation, RADseq will likely continue to

develop as a powerful technique for addressing ques-

tions in evolutionary biology.
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