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Abstract

Reduced representation genome-sequencing approaches based on restriction digestion
are enabling large-scale marker generation and facilitating genomic studies in a wide
range of model and nonmodel systems. However, sampling chromosomes based on
restriction digestion may introduce a bias in allele frequency estimation due to
polymorphisms in restriction sites. To explore the effects of this nonrandom sampling
and its sensitivity to different evolutionary parameters, we developed a coalescent-
simulation framework to mimic the biased recovery of chromosomes in restriction-
based short-read sequencing experiments (RADseq). We analysed simulated DNA
sequence datasets and compared known values from simulations with those that
would be estimated using a RADseq approach from the same samples. We compare
these ‘true’ and ‘estimated’ values of commonly used summary statistics, m, 0,
Tajima’s D and Fst. We show that loci with missing haplotypes have estimated
summary statistic values that can deviate dramatically from true values and are also
enriched for particular genealogical histories. These biases are sensitive to nonequilib-
rium demography, such as bottlenecks and population expansion. In silico digests with
102 completely sequenced Drosophila melanogaster genomes yielded results similar to
our findings from coalescent simulations. Though the potential of RADseq for marker
discovery and trait mapping in nonmodel systems remains undisputed, our results
urge caution when applying this technique to make population genetic inferences.
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Introduction

High-throughput sequencing technology has revolution-
ized evolutionary genetics, enabling biologists to gener-
ate massive amounts of genomic data to address
diverse questions in ecology and evolution. Impor-
tantly, new techniques allow high-throughput identifi-
cation of variable sites [e.g. single nucleotide
polymorphisms (SNPs)], even in species whose
genomes are prohibitively large for sequencing or for
which a reference genome is unavailable. In these situa-
tions, it is often preferable to eschew whole-genome
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sequencing in favour of a reduced representation
approach that can be used to sample a fraction of the
genome across many individuals at the same loci. A
promising new technology, restriction-associated DNA
(RADseq), is becoming popular for reducing genomic
complexity in DNA libraries to sequence a small por-
tion of the genome across many individuals (reviewed
in Davey efal. 2011). Hundreds of indexed RAD
libraries can be easily and inexpensively constructed
and sequenced to characterize levels and patterns of
genetic variation throughout the genome, even for non-
model organisms. RADseq has already been employed
in studies of population structure and biogeography
(Emerson ef al. 2010; Gompert et al. 2010; Hohenlohe
et al. 2010), allele frequency estimation (Van Tassell
et al. 2008), association studies (Parchman ef al. 2012),
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genetic mapping (Baird et al. 2008; Andolfatto et al.
2011; Pfender et al. 2011), selection and introgression
(Hohenlohe et al. 2011; Gompert et al. 2012), and linkage
disequilibrium (Hohenlohe et al. 2012).

RADseq differs from other genome-sequencing
approaches in that DNA fragments for construction of a
library of sequences are generated by digesting
genomes with a restriction enzyme, as opposed to
random DNA shearing. Enzyme digestion results in
nonrandom cleavage that ensures primarily the same
regions are sampled across individuals. While powerful,
the RADseq approach may be affected by numerous,
largely uncharacterized biases. Potential problems aris-
ing from PCR bias in library construction, sequencing
errors and inaccurate genotyping with lower sequenc-
ing depths have been recognized previously (Rokas &
Abbot 2009), but these biases are expected to affect all
re-sequencing projects. RADseq has an additional
ascertainment bias whose effects have not been
explored extensively: some recognition sequences will
themselves be polymorphic, resulting in missing data
for some chromosomes, and thus nonrandom sampling
of lineages in a sample (Fig. 1).

How does nonrandomly missing data affect estima-
tion of levels and patterns of genomic variation neces-
sary for population genetic inference? Here, we address
this question by developing a coalescent-simulation
framework to mimic the biased recovery of haplotypes
(hereafter genealogical bias) in RAD libraries. Our work
is consistent with but extends beyond that of Gautier
et al. (2012) who also studied how missing data bias
estimates of expected heterozygosity and Fsr. We ana-
lyse our simulations with additional commonly used
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summary statistics (r, 0, Tajima’s D, Fgr and the com-
plete allele frequency spectrum) that are used to study
demographic history and detect selection. We explore
how RADseq affects genome-wide estimates of these
statistics and how it impacts outlier analyses.

We show that RADseq nonrandomly subsamples the
genome in two ways. First, within a locus, variants in a
recognition sequence result in missing data and there-
fore truncate genealogies relative to the complete
sample at these loci. This truncation results in underes-
timates of commonly used diversity statistics © and 0.
Estimates of Tajima’s D are also less accurate, but Fgr is
relatively robust. Second, certain genealogies are more
likely to result in missing haplotypes than others, such
that RADseq samples a biased subset of all genealogies.
For example, loci with intermediate amounts of missing
data are more polymorphic than the simulation average
and more likely have genealogies with deeper diver-
gences. We show with in silico digests of 102 completely
sequenced Drosophila melanogaster genomes that our coa-
lescent simulations capture the major features of RAD-
seq’s genealogical bias. We discuss our findings and
provide general guidelines for using RADseq for popu-
lation genetic inference.

Methods

Coalescent simulations

We used Hudson’s ms (Hudson 2002) to simulate 10 kb
DNA fragments for 100 haploid individuals with differ-
ent population mutation and recombination rates
(i.e. 6 =4Ncp and p = 4N.r, with p and 7 being the
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Fig. 1 An example of a DNA sequence alignment (horizontal lines at right) along with the underlying genealogy of the locus (left).
Dots represent segregating mutations in the sequence and where in the genealogy they occurred. The wider grey portion of the
sequence alignment represents the recognition sequence and a white dot indicates a mutation in the recognition sequence. Haplo-
types are not observed in a recovery of chromosomes in restriction-based short-read sequencing experiment if mutations occur within
this region. In this example, the true time to most recent common ancestor (Tyvrca) of the sample is lost since a mutation occurred
within the recognition sequence in the most divergent haplotype; the genealogy is thus truncated to point ‘X" and results in incom-
plete sampling that is biased against recovery of the most divergent haplotype(s).

© 2013 Blackwell Publishing Ltd



mutation and recombination rates respectively). Three
values of 6 were used for simulations (0.0001, 0.001, or
0.01 per bp), with either p = 0 and 6 = p. We first simu-
lated a single population at demographic equilibrium
under each set of parameters above. To explore the
effect of demographic history on RADseq, we modelled
a bottleneck in which the population shrunk to 25% of
the original size for 0.1 N, generations, 0.1 N, genera-
tions before present, after which it recovered to its
original size. We also modelled an exponential growth
scenario in which the population grows exponentially
from 10% of its present-day size over 0.2 N, genera-
tions. Simulations were repeated 100 000 times for each
parameter set.

To explore the ability of RADseq to effectively detect
population subdivision using a common metric of
genetic differentiation (Fsr), we simulated two popula-
tions at demographic equilibrium that exchange
migrants at a constant rate per generation. We simu-
lated varying levels of population structure with 50
haploid individuals, or chromosomes, per population
with migration rates (Nm) of 10, 1 or 0.1, and
0 = p =0.01 per bp.

In silico RADseq experiment

Using custom Perl scripts, we performed an in silico
digest by searching these simulated fragments for a spe-
cific recognition sequence. Since Hudson’s ms (Hudson
2002) models DNA sequences with zeroes and ones, we
used recognition sequences consisting of 12 zeroes and
ones. Assuming equal nucleotide base composition, this
motif occurs as frequently as a six-base DNA restriction
enzyme site (about 2.8 times per 10 kb). Fragments that
contained no recognition sequences were not analysed.
After the in silico digest, we analysed the sequence
100 bp to the right of each recognition sequence to
model the standard RADseq protocol (Baird et al. 2008).
This length was chosen because it is currently a com-
monly used read length in Illumina sequencing. We
compared ‘true’ summary statistic values (before digest)
with ‘estimated” ones (after digest, using only chromo-
somes that would have been recovered in a RADseq
experiment). Here, we focus exclusively on biases
induced by restriction site polymorphism, which
ignores other potential sources of bias arising from
sequencing and alignment, such as other sources of
nonrandom sampling of haplotypes, sequencing errors
and reference bias (reviewed in Rokas & Abbot 2009;
Pool et al. 2010). These are expected to be general issues
for most or all re-sequencing projects and are not
addressed here.

Our simulation framework models the biased recov-
ery of haplotypes in the RADseq protocol due to
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restriction site polymorphism. At a particular locus, a
chromosome may not be sampled for two reasons: (i) a
cut site, which is polymorphic in the population, is not
present on that chromosome or (ii) a recognition
sequence is present within 100 bp to the right of
another recognition sequence, resulting in a fragment
that is removed in the size-selection step and thus not
sampled. As a result, the number of chromosomes sam-
pled to the right of a particular recognition sequence,
hereafter referred to as ‘chromosome sampling depth,
varies among loci and may be less than the total 100
simulated DNA sequences. To demonstrate the effect of
missing data due to the RADseq protocol, in the results
below, we either binned loci by chromosome sampling
depth or imposed cutoffs such that only loci with at
least a minimum number of sampled chromosomes are
analysed.

After the in silico digest of each fragment, we calcu-
lated the allele-frequency spectrum (AFS) for the 100 bp
to the right of each recognition sequence using all simu-
lated chromosomes (the ‘true’ AFS). We also calculated
the AFS using only chromosomes that have the correct
recognition sequence and would therefore be sampled
by a RADseq protocol (the ‘estimated” AFS). We then
used these to calculate typical summaries of the data
such as average number of pairwise differences (=,
Tajima 1983), Watterson’s 6 (6,,, Watterson 1975), Tajima’s
D (Tajima 1989) and Fsr (Weir & Cockerham 1984). As
above, the true values for these summary statistics
(m, Ot Dy were calculated using all chromosomes at
the locus, and estimated values (m,, Oy. D.) were
calculated only for chromosomes that would be
sampled in a RADseq experiment.

For the simulations with population subdivision, for
any one locus, chromosomes are sampled according to
criteria described above to mimic the RADseq protocol.
Fsy can be inflated when one population has greater
sampling depth, which may occur if a recognition-site
mutation rises to a higher frequency in one population
than the other, and this may confound inferences based
on Fgr. Thus, for our analyses, we condition on sample
sizes being the same for both populations to avoid these
artefacts that inflate estimates of Fsr.

Double digest RADseq

We modified our framework to explore how summary
statistics are affected by another RADseq protocol
recently developed by Peterson ef al. (2012), which
relies on double digests. Briefly, this method requires
first digesting the genome with two restriction enzymes
and then selecting those fragments that fall within a
defined size interval. We mimicked this process by
sampling only fragments that were flanked by the same
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two complete recognition sequences of 6 zeroes and
ones that were either within 150-250 or 350450 bps of
each other. The length of the restriction sequence was
chosen to make the overall size of the mutational target
associated with each chromosome at a locus the same
as the standard RADseq protocol mentioned above. We
further required that no additional cut sites be present
in between that cause the fragment to be shorter than
the selected size. We then sampled the 100 bp immedi-
ately adjacent to the left recognition sequence and anal-
ysed this as described above for the standard RADseq
method. Although a double digest would normally
involve sampling fragments flanked by two distinct rec-
ognition sequences, we only use a single recognition
sequence for this in silico digest (repeated twice). How-
ever, since the sampling properties are the same for any
arbitrary sequence of a specified length, we still refer to
this modified framework as a ‘double digest.” All analy-
ses presented for the double digest protocol used the
size selection with shorter fragments (150-250 bps)
unless otherwise stated.

Empirical confirmation with Drosophila melanogaster

To confirm whether the predictions of our simulation
framework reflect biases that could arise in an actual
RADseq experiment, we performed in silico digests of
102 fully sequenced hemizygous (i.e. only one chromo-
some is sampled) D. melanogaster individuals (Pool et al.
2012). We acquired genome assemblies in fastq format
from www.dpgp.org and subsequently translated these
to fasta format requiring a minimum nominal base
quality of 30. We masked regions of putative identity-
by-descent, described in Pool ef al. (2012), using the
conversion/masking script provided by www.dpgp.org.
We selected three different recognition sequences repre-
senting distinct base compositions, Asel (TAATTA),
EcoRI (GAATTC) and Eagl (GCCGGC), to digest the
assemblies in silico. Digests were performed as described
above for coalescent simulations mimicking the standard
RADseq protocol (Baird et al. 2008). In brief, we digested
each genome with a specific recognition sequence and
considered that chromosome to be sampled if there was
not an additional recognition sequence within 100 bp to
the right. In cases where there was missing data in the
recognition sequence (i.e. due to masked low-quality
base calls, and not due to high-quality variants in the
recognition site), we excluded those chromosomes from
calculations of both true and estimated n. Each recogni-
tion site with at least one observed chromosome was
considered for downstream analysis if at least 100 of the
chromosomes in the original genome assemblies were
covered by quality 30 or greater sequence through the
entire region spanned by the recognition sequence.

Results

RADseq underestimates polymorphism

We generated simulated datasets for 100 haploid indi-
viduals and analysed them mimicking a RADseq proto-
col (see Methods for details). In comparing ‘true’ values
of summary statistics (m, 6y, Dy with ‘estimated’ val-
ues (me, Oye D, calculated from the data using only
chromosomes that would be sampled by RADseq), it is
apparent that the RADseq protocol results in systematic
underestimation of polymorphism (Fig. 2A). Not sur-
prisingly, increasing amounts of missing data exacer-
bates this bias, and there is a strong positive correlation
between chromosome sampling depth and estimates of
polymorphism (Fig. 2A). Fortunately, a majority of loci
have all chromosomes sampled, especially for lower
parameter values of 0 in the simulations (Fig. 2B). We
found that m; is more sensitive to missing data than 0.
Recombination decreases this sensitivity and brings val-
ues of both m; and 0, closer to the simulation parame-
ter value of 6 (Fig. S1, Supporting information). The
difference between estimated and true values is greater
for loci from simulated data sets with higher input val-
ues of 0 (Fig. S2, Supporting information), though
increasing the recombination rate tends to decrease this
difference. This is because recombination decreases cor-
relations between variants in the recognition sequence
and those in the flanking sequence.

Simulations of the double-digest RADseq protocol
(Peterson et al. 2012) produce similar results. However,
relative to the standard RADseq protocol, loci that have
higher chromosome sampling depths are less frequent
in the double-digest protocol (Fig. S3, Supporting infor-
mation) and have true and estimated values of m and
0,, that are even lower than simulation averages (Fig.
54, Supporting information). As in the standard RAD-
seq protocol, a lower population mutation rate mitigates
this effect (Fig. S5, Supporting information).

Although by definition, true and estimated summary
statistics are identical when all chromosomes are sam-
pled, loci with complete data still tend to have lower
polymorphism than simulation averages (Table 1,
Fig. 2, Fig. S2, Supporting information), particularly for
the double-digest protocol (Table 1, Figs S4 and S5,
Supporting information). This bias is exacerbated in the
double-digest simulation when longer fragments were
selected (350450 instead of 150-250 bps). Thus, while
completely sampled loci are not biased individually,
they will not capture the true genome-wide distribution
of values. For simulations with higher polymorphism
and no recombination, estimates of means and vari-
ances are further reduced below true simulation
averages.

© 2013 Blackwell Publishing Ltd
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Fig. 2 (A) True and estimated values of n (red) and 0., (blue) from in silico recovery of chromosomes in restriction-based short-read
sequencing (RAD)seq as a function of chromosome sampling depth for 6 = 0.01 per bp without recombination. Here, the simulation
average of 0 is 1 per 100 bp sequence read. Shaded regions show the 95% bootstrap percentile confidence intervals (1000 simulations)
for the mean of true values of 7 (solid red) and 6,, (solid blue) and estimated values of r (shaded red) and 6,, (shaded blue) from in
silico RADseq. ‘Chromosome sampling depth’ refers to the number of chromosomes that are actually sampled (have intact restriction
sites) in the in silico experiment, and ‘true’ values are those calculated using the complete data for the same markers. The histograms
in A (no recombination) and B (with recombination, p = 8) show the proportion of each chromosome sampling depth in the data and
indicate that most markers are highly sampled with these simulation parameters, especially for lower values of 0 (B).

Table 1 Comparison of estimated values of summary statistics (O or m.) when all chromosomes are sampled to true simulation
averages (0, or m,)

Mean Variance
Recombination No recombination Recombination No recombination
Protocol 0 per bp Oive/Owa Te /Ty Osve/Owa Mo/ Ty Owe/Owa Mo Ty Owve/Owa Te /Ty
Standard 0.0001 0.994 0.995 0.991 0.990 0.994 0.996 0.990 0.990
0.001 0.987 0.982 0.988 0.984 0.988 0.980 0.988 0.979
0.01 0.956 0.933 0.940 0.909 0.941 0.901 0.904 0.837
Double digest 0.0001 0.835 0.836 0.838 0.837 0.836 0.836 0.839 0.836
0.001 0.858 0.851 0.829 0.823 0.857 0.841 0.830 0.815
0.01 0.829 0.797 0.811 0.772 0.812 0.737 0.771 0.684

Results from two different simulation parameters of 6 are shown. When recombination is present, p = 6. Results are given for both
the standard and double digest RADseq protocols.

Chromosome sampling depth is correlated with

particular genealogies strong correlation between the frequencies of polymor-

phisms within a read and frequencies of the recognition

Since the underlying genealogy of a sample of chromo-
somes at a locus provides information about its evolu-
tionary history, we examined how genealogies vary
with chromosome sampling depth using the AFS. The
true AFS present in the sequence flanking a restriction
site, conditioning on the chromosome sampling depth
recovered in a RADseq experiment, shows that each
respective sampling depth has a unique AFS and thus
contains a nonrandom subset of the ‘true’ genealogies
(Fig. 3A). Although recombination reduces this effect, a

© 2013 Blackwell Publishing Ltd

sequence remains apparent in the AFS (Fig. 3B). This is
consistent with empirical observations of significant LD
on the scale of a 100-bp sequencing read observed in
many natural populations (e.g. Miyashita & Langley
1988; Hohenlohe et al. 2012; Langley et al. 2012; Pool
et al. 2012). Lastly, in agreement with their higher val-
ues of m, loci with intermediate amounts of missing
data in a RADseq experiment have genealogies with a
greater time to common ancestry (Tyvrea’s, not shown)
relative to the simulation average.
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Fig. 3 Density plot of true allele frequency spectra (AFS) for
loci with different chromosome sampling depths (A) without
and (B) with recombination. Each row represents the AFS for a
particular chromosome sampling depth with the density of a
particular allele frequency indicated as a heat map. The Z score
fits a normal distribution to the entries in each row, and each
cell is coloured based on this fitting. This shows that loci with
complete sampling (top of each graph) have an AFS character-
ized by abundant low-frequency polymorphisms, whereas loci
with more missing data have greater proportions of intermedi-
ate frequency variants.

Nonequilibrium demography and population
subdivision affects true and estimated summary
statistics

Nonequilibrium demographic processes can affect the
AFS. Therefore, we asked what effect the introduction
of a RADseq capture method can have on estimates of
summary statistics for populations not at equilibrium.
To this end, we simulated data under two commonly
used demographic models: a population bottleneck and
exponential growth. For the standard RADseq protocol,
a population bottleneck followed by growth slightly
decreases the effect missing data has on estimating true
summary statistic values by slightly increasing the cor-
relation between estimated and true values of 0,, and D
(Fig. 4). However, bottlenecks have little effect on the
estimates of m. Exponential population growth greatly
reduces the sensitivity of n and 0,, to missing data and

1.0
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~
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=== Population bottleneck
------ Population expansion
= pi
O theta
©
o - m D
r T T T T 1
0 20 40 60 80 100

Chromosome sampling depth cutoff

Fig. 4 Correlations between true and estimated values of sum-
mary statistics are sensitive to non-equilibrium demography
and chromosome sampling depth cutoffs. Values for n (grey),
0,, (light grey) and Tajima’s D (black) under different demo-
graphic models are plotted (solid lines = standard neutral
model, dashed lines = bottleneck, dotted lines = population
expansion). The Y-axis is the correlation between true and esti-
mated values for loci that satisfy a given chromosome sam-
pling depth cutoff (i.e. with at least a minimum number of
chromosomes with intact recognition sequences).

causes loci at all sampling depths to have estimated val-
ues of summary statistics that more closely resemble
their true values (Fig. 4). Both of these scenarios miti-
gate the effect missing data has on estimation of sum-
mary statistics because effective population sizes are
reduced (relative to an equilibrium population of equal
present size), particularly for the exponential growth
model.

A common goal of population genetic analyses is to
detect and study population structure and differentia-
tion. To explore the effects of RADseq on a common
metric of genetic differentiation, Fsy, we simulated two
populations at demographic equilibrium that exchange
migrants at a constant rate per generation (described in
Methods, performed only for the standard RADseq pro-
tocol). Unlike the results for metrics that summarize the
AFS within a population, the distribution of estimated
Fsr for loci with all chromosomes sampled is nearly
identical to the true distribution (Fig. S6, Supporting
information) for effective migration rates of Nm =10
and Nm =1. This strong concordance breaks down
when populations exchange one migrant every 10 gen-
erations (Nm = 0.1; Fig. S6C, Supporting information).
Importantly, including loci with missing data biases the
estimated Fsr distribution, since missing data tends to
inflate estimates of Fgr (Fig. 5). This is consistent with
the results of Gautier et al. (2012) who considered biases
of RADseq using a slightly different population subdi-
vision demographic model.

© 2013 Blackwell Publishing Ltd
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Fsr, 0, m and D outliers are sensitive to missing data

Although the levels and patterns of genetic variation in
neutral loci that are linked to locally adapted alleles
will depend on demographic and selective circum-
stances, it is interesting to consider outliers in the distri-
butions of summary statistics as potential metrics for
detecting positive selection and local adaptation. In par-
ticular, high Fsr may indicate that a locus is in linkage
disequilibrium with locally adapted alleles. However,
we show that missing data may inflate Fgr values, and
rates of false positives quickly increase as the chromo-
some sampling depth cutoff decreases, especially when
chromosome sample sizes amongst populations are
allowed to vary as little as 20% (Fig. 6). Thus, it may be
wise to constrain analyses to loci with complete chro-
mosome sampling, but of loci in the upper 5% tail of
true Fgr distribution, only 13%, 11% and 5% have com-
plete chromosome sampling in both populations for
Nm =10, 1 and 0.1 respectively.

Within a population, genomic regions with low
nucleotide diversity and left-skewed site frequency
spectra may indicate the presence of a recent selective
sweep via the hitchhiking effect (Maynard-Smith &
Haigh 1974), or strong purifying selection (Charlesworth
et al. 1993). We explored the effect of missing data on
outlier analyses involving the commonly used diversity
statistics 0,, and m. Specifically, we examined the lower
5% tail of the distributions of these statistics to assess
how missing data affects false positive and false nega-
tive rates. Using different sampling depth cutoffs, rates
of false positives and false negatives increase with the
inclusion of loci with missing data for both the stan-
dard RADseq protocol (Fig. 7) and the double-digest
protocol (Fig. S7, Supporting information). Similar anal-
yses with lower values of 0 (0.001 per bp and lower)
were not possible since the 5% quantile of summary

© 2013 Blackwell Publishing Ltd
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Fig. 5 Estimated Fsr (solid line) as a
function of chromosome sampling depth
cutoff per population (each consisting of
50 chromosome total) for three different
migration rates: Nm = 10 (A), Nm =1 (B)
and Nm = 0.1 (C). The dashed line is the
true simulation average. Here, we condi-
tion on sample sizes being the same in
both populations to avoid inflated

Nm=0.1

estimates of Fst. Note that the Y-axes do
not start at zero to more clearly illustrate
differences between true and estimated
values.
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Fig. 6 Proportion of estimated Fsr 5% outlier loci that are false
positives (solid lines) or false negatives (dashed lines) relative
to the true distribution for different chromosome sampling
depth cutoffs (50 chromosomes per population in complete
sampling). Three different rates of migration are represented:
Nm = 0.1 (light gray), Nm =1 (gray), and Nm =10 (black). If
missing data are present, analyses were performed on loci for
which chromosome sample sizes are exactly the same in both
populations (A) or allowed to vary by 20% (B).

statistics contained the majority of loci due to low levels
of polymorphism.

Since loci with missing data have more false positives
and negatives, a possible solution is to limit outlier
analyses to loci with complete chromosome sampling. If
outliers were evenly distributed across loci irrespective
of missing data, 5% of loci in each sampling depth cate-
gory would be outliers. However, in agreement with
the results presented in Table 1, loci with complete
sampling have slightly decreased diversity and are
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more likely to fall within the lower 5% tail of the true
distribution of m and 0,, and less likely to fall within
the upper 5% tail (Table 2). Thus, limiting analyses to
completely sampled sites may inadvertently enrich for
loci that have experienced recent positive selection or
are highly constrained by strong purifying selection.

In silico digestion of Drosophila melanogaster genomes

To test whether our framework captures the major
biases associated with RADseq, we performed in silico
digests of 102 recently released D. melanogaster genome
assemblies (Pool et al. 2012) using the standard RADseq
protocol (Baird et al. 2008). The choice of restriction
enzyme greatly affects which features of the genome
are sampled (Fig. 8A). The GC-rich recognition sequence
of Eagl samples exons more frequently than loci
sampled at random and much more frequently than the
AT-rich Asel, which disproportionately samples intronic
and intergenic regions. EcoRI, which has an intermedi-
ate base composition, samples genomic regions at
frequencies similar to their abundance in the genome. It
is likely that owing to different levels of polymorphism
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Fig. 7 Proportion of estimated m (grey), 6,, (light grey) or D
(black) outliers that are false positives (solid lines) or false neg-
atives (dashed lines) for inclusion in the lower 5% tail for dif-
ferent chromosome sampling depth cutoffs.

Table 2 Loci with complete sampling are more likely to fall
within the lower 5% tail of the true distribution of © and 0,,

Protocol Tail Ratio

Standard Lower tail 1.19 1.17
Upper tail 0.76 0.74

Double digest Lower tail 1.76 1.95
Upper tail 0.45 0.37

Shown are the ratios of the proportion of loci with complete
chromosome sampling depth that are true outliers to the
proportion of true outliers in the entire simulated data set.

in different parts of the genome (e.g. due to stronger
purifying selection in exonic vs. intergenic sequences),
choice of restriction enzyme results in different esti-
mates of nucleotide diversity (Fig. 8B).

Similar to the simulation results, in regions of the
genome where m, is higher, it is more common for an
intermediate number of chromosomes to be sampled
(Fig. 8C), which is consistent with the results of our
simulations (above). This difference in m, between loci
with different chromosome sampling depths changes
depending on the recognition sequence of the restriction
enzyme used and increases as more polymorphic
regions of the D. melanogaster genome are sampled
(i.e. with an enzyme with an AT-rich recognition
sequence). Again, we observe similar patterns in our
simulation framework (above), suggesting that our
simulations accurately reflect much of the bias associ-
ated with RADseq.

To compare our framework to the D. melanogaster
data, we ran simulations with an increased recombina-
tion rate (p = 0.1 per bp, 6 = 0.01 per bp); p = 10*0 has
been used previously in demographic inference of this
species (e.g. Thornton 2009). We then recorded the
median of the ratio expected to true n (n./m) for each
locus with a particular number of sampled chromo-
somes (Fig. 8D). While our simulation appears to accu-
rately model the majority of genealogical bias, we did
not perfectly capture the dynamics of loci that have <10
sampled chromosomes, perhaps as a result of violations
of the infinite sites mutation-model (see Discussion).

Discussion

RADseq provides a simple and inexpensive means of
collecting genome-wide sequence data from diverse
nonmodel organisms (e.g. Emerson ef al. 2010; Hohen-
lohe et al. 2011; Gompert et al. 2012; Parchman et al.
2012). This approach is increasing in popularity as a
means of population genomic inference, but the effects
of the ascertainment bias associated with polymorphism
in recognition sites have not been extensively explored
(but see Gautier et al. 2012). Biases can arise from muta-
tions segregating in the recognition sequence such that
haplotypes are nonrandomly sampled for loci linked to
these polymorphisms. Though it may seem compara-
tively rare for a mutation to occur within a recognition
sequence, these variants are frequent enough to enable
detailed population genetic analyses (e.g. Restriction
Fragment Length Polymorphisms, Botstein et al. 1980).
Consequently, a thorough examination of RADseq bias
is essential for enabling detailed and accurate popula-
tion genetic analyses based on this methodology.

Our coalescent simulations model two separate RAD-
seq protocols (Baird et al. 2008; Peterson et al. 2012) and

© 2013 Blackwell Publishing Ltd
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Fig. 8 Results for the in silico digests 102 Drosophila melanogaster genomes. (A) Proportion of sites located in distinct regions of the
genome when in silico digests are performed with different enzyme recognition sequences. GC-rich recognition sequences sample
more exons, whereas AT-rich recognition sequences sample comparatively more introns and intergenic regions. ‘Random’ values are
calculated from fragments selected at random throughout the genome. (B) Box plots of true n for regions sampled by enzymes with
different recognition sequences. (C) The median true 7 (solid line) and estimated n (dashed line) as a function of chromosome sam-
pling depth for three different recognition sequences. (D) Median of the ratio of estimated « to true n as a function of the number of
sampled chromosomes. Dark blue, purple and cyan lines represent the three different restriction enzymes used in the in silico digest
of the D. melanogaster genomes, and the dotted black line is from simulations with p = 0.1 per bp, 6 = 0.01 per bp

show that in both cases, true and estimated values of &
and 0, vary with the amount of missing data that
would occur in a RADseq experiment. Loci with higher
ny and 0, generally have fewer sampled chromosomes.
These loci also have distinct frequency spectra and dee-
per divergence times. These patterns indicate that cer-
tain genealogies are particularly prone to missing data
in RADseq experiments. Both . and 0., and their cor-
relations with true values decrease systematically as a
function of the chromosome sampling depth, making
loci with higher diversity the most strongly underesti-
mated. Tajima’s D is also sensitive to missing data. One
potential solution might be to limit analysis to loci for
which one can be certain of complete sampling. How-
ever, while this will reduce bias from sampling particu-
lar branches of the genealogy, it is important to
remember that loci where RADseq samples all chromo-
somes are also a nonrandom subset of genome-wide n
and 0, distributions. Underestimated polymorphism
has been previously observed in RADseq but was
attributed to conservative SNP calling (Hohenlohe et al.
2010).

Loci with complete sampling for the double-digest
protocol have further decreased estimates of diversity
(compared to the true genome-wide estimate) than the

© 2013 Blackwell Publishing Ltd

standard protocol because missing data may arise not
only from mutations within recognition sequences but
also from novel restriction sites that cause some haplo-
types to be outside of the size-selection range. Indeed,
this problem is exacerbated for the simulation in which
longer fragments were selected since there is a larger
region within which novel restriction sites may occur.
In reality, segregating insertions or deletions may also
contribute to missing data by changing the length of
sequences between cut sites to outside the range of size
selection, but this additional source of bias was not
modelled in this study.

Importantly, inclusion of loci with incomplete sam-
pling may actually invert relative estimates of m and 6,
such that loci that are in reality more diverse will have
lower estimates for these parameters than loci with
complete sampling that are taken from less diverse
regions. In practice, for a particular locus with incom-
plete chromosome sapling depth, it may not be feasible
to determine if chromosomes were not sequenced from
polymorphism in the restriction site or from low
sequencing depth.

The correlations between estimated and true values
of summary statistics are also sensitive to nonequilibri-
um demography. Both population bottlenecks and
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expansions increase correlations between true and esti-
mated values. The greater correlations presumably
occur because both demographic scenarios decrease the
effective population size and therefore reduce genetic
diversity, so fewer loci have missing data and thus
inaccurate estimates of summary statistics. Since natural
populations are likely to have complex evolutionary
histories, summary statistics may be affected by a com-
bination of multiple demographic events in addition to
the population mutation and recombination rates. Hav-
ing estimates of these parameters a priori for a given
study system help predict how frequently loci will con-
tain missing data and how sensitive estimated values of
summary statistics are to missing data.

We also explored the ability of RADseq datasets to
detect population structure and differentiation by calcu-
lating Fsy between two populations at demographic
equilibrium that exchange migrants at a constant rate
per generation.

The distribution of estimated Fst values for loci with
all chromosomes sampled is very similar to the true
distribution. The relative robustness of Fsr to the RAD-
seq protocol suggests that this methodology is perhaps
well suited to estimating rates of migration between
populations.

Since outliers in the distributions of summary statis-
tics are frequently used as metrics for detecting selec-
tion, we explored the sensitivity of Fsr, 0., and =
outliers to missing data. We find that rates of false
positives and false negatives increase for Fgr, 0y, and ©
as chromosome sampling depth decreases, since
missing data biases estimates. This has important impli-
cations for outlier analyses as tests for selection or local
differentiation and indicates that empirical outliers
obtained from RADseq experiments where complete
chromosome sampling cannot be established with
certainty should be interpreted with caution. Again, a
potential solution is to restrict analyses to loci with
complete chromosome sampling depth, but with this
correction, a vast majority of true Fgr outliers would be
missed since many true outliers have incomplete
sampling. Moreover, since many investigators sequence
diploid organisms, it may be difficult to quantify the
amount of missing data and the sample size variation
amongst populations, both of which would inflate
estimated Fgy values.

Our in silico RADseq analyses of 102 Drosophila mela-
nogaster genomes were largely consistent with the
results of our simulations, in that polymorphism is
underestimated, especially for more diverse genomic
regions. Although undoubtedly the populations from
which these samples are derived are experiencing
nonequilibrium selective and demographic processes
that we did not model (Corbett-Detig & Hartl 2012;

Pool et al. 2012), the overall congruence of our simula-
tions with the Drosophila data suggests that our basic
simulation framework captures the major biases that
affect RADseq. One possible explanation of the poor fit
of our model at low chromosome sampling depths is
that the real data includes violations of the infinite-
sites mutation model, such that mutations recur
within nascent recognition sequences on different
haplotypes. This would effectively inflate diversity
relative to infinite-sites assumptions of the coalescent
simulations. Nonetheless, it is clear that even though
our simulations are relatively simplistic, we have iden-
tified a major potential bias inherent to the RADseq
methodology.

The nucleotide composition of the recognition
sequence affects which features of the genome are sam-
pled and this suggests an appealing means of tuning
RADseq for the specific goals of each respective study.
For example, for the purpose of SNP discovery, one
may prefer to select an enzyme with an AT-rich recog-
nition sequence; conversely, if the goal is to study
genetic differentiation between divergent populations,
GC-rich recognition sequences will generally access a
higher proportion of conserved regions of the genome
and may increase the overlap in sampled loci between
populations. However, such choices must still be
considered with appropriate caveats, for instance, in
species with DNA-methylation, CG sites are known to
mutate at significantly higher rates than the genomic
average (Cooper et al. 1995). In this case, using an
enzyme which cuts sequences that contain these motifs
may increase the amount of missing data, and violate a
tacit assumption of our model that the per-site mutation
rate in the recognition sequence is identical to that in
the sequenced read. We thus emphasize that because
each restriction enzyme will access different genomic
regions, which may not have identical allele frequency
spectra, the choice of restriction enzyme will also affect
population genetic inferences.

Our results are also consistent with those of Gautier
et al. (2012), but our interpretation of how RADseq
affects estimates of diversity is different. In their study,
Gautier et al. state that RADseq results in overestimates
of heterozygosity because they only consider segregat-
ing sites that are observed after the in silico digest of
simulated fragments. This effect occurs because muta-
tions in linked recognition sequences are more to likely
arise on the major allele haplotype, thus inflating minor
allele frequencies and estimates of heterozygosity. Here,
we examine the effect that RADseq has on commonly
used diversity statistics per site and thus account for
both observed and wunobserved segregating sites.
Because variants in a recognition sequence truncate
genealogies relative to the complete sample at these

© 2013 Blackwell Publishing Ltd



loci, some true variants are not observed, overall result-
ing in underestimates of m and 0,,.

RADseq is an important emerging methodology, and
is likely to see increased use; it is therefore important to
identify biases and where possible to develop a means
of accounting for them. In general, the assumption of
identical per-site mutation rates in the cut-site and
sequenced read is likely to be reasonable. Given this
assumption, it may be possible to account for the genea-
logical bias of RADseq using our (or a similar) coales-
cent simulation modification framework. That is,
standard coalescent simulations can be performed, and
the resulting sequence digested and analysed as we
describe. If the resulting biased summary statistics are
then compared with empirically obtained RADseq sum-
mary statistics (e.g. using approximate Bayesian compu-
tation software such as ABCreg; Thornton 2009), it may
be possible both to directly account for this source of
bias in population genetic analyses and to recover unbi-
ased estimates of the true distributions of relevant sum-
mary statistics.

This study can serve as a useful guide for investiga-
tors using RADseq for population-genomic analyses.
From our simulations and empirical in silico digests,
loci with missing data give inaccurate estimates of
summary statistics and may increase the rate of false
positives in outlier analyses. Thus, identifying and
pruning loci with incomplete sampling will be impor-
tant in any RADseq experiment aimed at accurately
estimating commonly used summary statistics. Since
RADseq will generally produce thousands or tens of
thousands of markers throughout the genome, pruned
datasets that retain only loci with complete sampling
will still be substantial (Fig. 2). However, if RADseq is
to be used for demographic inference, it remains
important to recognize that ignoring loci with missing
data, which are enriched for particular genealogical
structures, will also affect estimation of evolutionary
parameters and may not accurately represent a ‘gen-
ome average’ value. If many loci have high sequencing
depths such that sites with missing data can easily be
detected by differences in coverage, RADseq provides a
powerful way to estimate genome-wide divergence
amongst populations to describe biogeographic pat-
terns. Thus, though our findings urge caution, with
careful consideration of experimental design, data use
and interpretation, RADseq will likely continue to
develop as a powerful technique for addressing ques-
tions in evolutionary biology.
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