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DNA Pooling and Statistical Tests for the
Detection of Single Nucleotide

Polymorphisms
David M. Ramsey and Andreas Futschik

Abstract
The development of next generation genome sequencers gives the opportunity of learning

more about the genetic make-up of human and other populations. One important question involves
the location of sites at which variation occurs within a population. Our focus will be on the
detection of rare variants. Such variants will often not be present in smaller samples and are hard
to distinguish from sequencing errors in larger samples. This is particularly true for pooled samples
which are often used as part of a cost saving strategy. The focus of this article is on experiments
that involve DNA pooling. We derive experimental designs that optimize the power of statistical
tests for detecting single nucleotide polymorphisms (SNPs, sites at which there is variation within a
population). We also present a new simple test that calls a SNP, if the maximum number of reads of
a prospective variant across lanes exceeds a certain threshold. The value of this threshold is defined
according to the number of available lanes, the parameters of the genome sequencer and a specified
probability of accepting that there is variation at a site when no variation is present. On the basis
of this test, we derive pool sizes which are optimal for the detection of rare variants. This test is
compared with a likelihood ratio test, which takes into account the number of reads of a prospective
variant from all the lanes. It is shown that the threshold based rule achieves a comparable power to
this likelihood ratio test and may well be a useful tool in determining near optimal pool sizes for
the detection of rare alleles in practical applications.

KEYWORDS: genome sequencing, optimal DNA pooling, statistical inference, single nucleotide
polymorphism
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1 Introduction

The field of genome sequencing requires new statistical methods due to the intro-
duction of new generation genome sequencers and the mass of data accompanying
it. A genome may be thought of as a sequence where each site can be occupied by
one of four nucleotides, denoted A, C, G and T. At a large majority of sites, each in-
dividual in a population has the same nucleotide. Sites at which a population shows
variation are called single nucleotide polymorphisms (SNPs). In general, there are
two variants (alleles) at such sites. The least (most) common of these two alleles is
called the minor allele (major allele, respectively).

As it is simple to detect a SNP where both alleles are common, we concen-
trate on the detection of rare minor alleles. This problem is not trivial, since it is
necessary to distinguish a low number of reads from individuals with a rare allele
from sequencing errors. Compared to separate sequencing of individuals, pooling
is a cost effective sequencing strategy, where DNA material from more than one in-
dividual is placed in a single lane of the sequencer. Large pools increase the chance
of capturing rare alleles, but make it more difficult to avoid false positives due to
sequencing errors. It thus makes sense to look for a pool size that is optimal in
terms of power, given a specified probability of a type I error. We introduce two
statistical tests for identifying SNPs based on pooled samples. One is a likelihood
ratio test, whereas the other uses the maximum number of reads of the minor allele
across all lanes. This maximum test is very simple and has a power comparable
to the likelihood ratio test. We derive asymptotically optimal pool sizes for de-
tecting rare alleles (i.e., pool sizes that are optimal when the frequency of a rare
allele is small) according to the number of lanes available and the parameters of
the sequencer used. Also, we investigate the minimum number of reads of an allele
required from a lane to infer that a minor allele is present.

Accurate detection of SNPs is important in determining the genetic factors
behind certain diseases, as well as the estimation of mutation rates. In population
genetics, a local excess of SNPs where the minor allele is rare is a typical character-
istic of genomic regions that have undergone recent positive selection. Also, SNP
databases such as dbSNP (http://www.ncbi.nlm.nih.gov/snp) are accepting submis-
sions of newly identified SNPs for many different organisms. Since there should
be confidence in the SNPs submitted, sufficient statistical evidence is desirable,
suggesting that an SNP found is not merely a sequencing error.

Achaz (2008) notes that interpreting sequencing errors as reads of a rare
allele leads to a high false discovery rate when detecting SNPs. He proposes that
the existence of a SNP should be inferred only when the number of reads of the
minor allele exceeds a given threshold. Knudsen and Miyamoto (2009) and Jiang,
Tavaré and Marjoram (2009) extend this work by proposing methods for estimating
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the mutation rate (in effect estimating the number of SNPs along a section of the
genome at the same time) taking sequencing errors into account. Jiang, Tavaré and
Marjoram (2009) also propose a threshold rule for inferring genotypes.

When DNA is not pooled, genetic material from one individual is placed in
each lane of a sequencer, which gives a random number of reads of the nucleotide
(or the two nucleotides in the diploid case) at a particular site. Due to advances
in sequencing, the mean number of reads from a site may be large (particularly
when a section of the genome is amplified). In such cases, it may be more efficient
to pool DNA (see Sham et al. (2002)). Although sequencing errors are more diffi-
cult to eliminate when sequencing pooled samples, the larger number of individuals
that can be sequenced within a given budget will often outweigh these difficulties.
Therefore, pooling is popular in practice. Holt et al. (2009) use pooling to es-
timate allele frequencies and detect SNPs in clonal bacterial populations. Druley
et al. (2009) use a similar approach to finding rare alleles (i.e., detecting SNPs).
Reads are anonymous in the sense that we do not know from whom a read came,
only the lane. Hence, we cannot infer the genotypes of diploid individuals using
such a pooling procedure. Craig et al. (2008) describe a method of ”bar-coding”,
enabling researchers to infer which individual a read came from and use this ap-
proach to detect SNPs. However, bar coding is often impractical, particularly when
genotyping small organisms. Kenny et al. (2011) use a similar approach to de-
tecting SNPs. Also, they show that the distribution of the number of reads from
individuals in a pool is relatively uniform. These methods use independent pools,
i.e., each individual appears in exactly one pool. Hence, if there are k lanes and
the pool size is m, then the sample size is km. Erlich et al. (2009) use a pooling
scheme in which individuals appear in several pools. Such a scheme enables us to
infer which individual has an allele which is sufficiently rare in the sample without
having to use bar-codes.

This article extends the results of Futschik and Schlötterer (2010) on the
sequencing of anonymous, independently pooled DNA samples. It is assumed that
the number of reads from a lane has a Poisson distribution and the probability of
an error in any given read is a known constant. They consider the probability of
detecting a SNP using a threshold rule, i.e., an allele is inferred to exist if the number
of times it is read in a lane is greater than some chosen number. They also consider
the probability of wrongly inferring that a site is a SNP. This article presents two
tests for detecting SNPs which control the probability of wrongly inferring that a
site is a SNP. One test is based on a threshold rule, which is analyzed to obtain
pool sizes maximizing the probability of detecting a rare minor allele. It is assumed
that there is a given number of available lanes and we have good estimates of the
mean number of reads per lane and the error rate. Error rates can be obtained from
PHRED-quality scores that are given for each read. Although these scores can
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be translated into the probability of a sequencing error, these probabilities are not
always very accurate. This is especially true for Illumina reads. Therefore, methods
and software are available for recalibrating the scores. As these recalibrated scores
may still not always be perfect, we also investigate the robustness of the results
when estimates of the error probabilities are inaccurate and/or only an upper bound
on the error probabilities is known.

Section 2 presents the problem and a simple statistical model describing the
data obtained from genome sequencing. Section 3 presents a likelihood ratio test
for detecting SNPs based on this statistical model. Section 4 presents a simple test
based on the maximum number of reads of a prospective minor allele from a lane.
A function estimating the power of such a test according to the pool size and the pa-
rameters of the genome sequencer is derived. The asymptotically optimal pool size
is determined on the basis of this function. Section 5 gives results for simulations
of the test procedures. In order to check the robustness of these tests, simulations
were also carried out under more general assumptions. Section 6 summarizes the
results and proposes directions for future research.

2 Formulation of the Problem

This section presents a simple model for the detection of SNPs. Assume that there
are always two alleles at a SNP. Let the number of available lanes be k and the
number of individuals (assumed to be haplotypes) in a pool be m, i.e., the sam-
ple size is n = km. Assume that the number of reads of a site from a lane has a
Poisson(λ) distribution. The data are simply the number of reads from each lane of
each nucleotide at each site along a section of the genome. It should be noted that
for convenience λ is assumed to be independent of the site and allele. Also, λ is
reasonably large (of order 10 or greater). Each read records an incorrect base with
probability ε, independently of other reads (assumed to be of order 10−2 or lower).
Note that we can also define ε to be an upper bound on the error probabilities. In
addition, suppose good estimates of the parameters λ and ε are available for the
sequencer used.

Suppose that the minor allele frequency at a given locus is p. The goal is to
define an optimal pooling procedure while controlling the type I error rate for the
following hypotheses:

H0: The locus is not a SNP, i.e., p = 0.
HA: The locus is a SNP with minor allele frequency p > 0.
Given a reasonably large sample size, any sensible test will detect a minor

allele of large frequency with power close to one. Hence, we concentrate on finding
rare minor alleles. The argument for the existence of an optimal pool size based on
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a test inferring the existence of a SNP when the maximum number of reads of the
minor allele from a lane is above a certain threshold is as follows:

1. When the number of lanes is fixed, by pooling individuals we can increase
the sample size. This increases the probability that a rare allele is actually included
in the sample.

2. However, as the pool size increases, the number of reads per individual
decreases and it becomes harder to distinguish between reads from one individual
with the minor allele and errors.

3. Due to these counteracting effects, given that the number of reads per lane
is reasonably large, the probability of detecting a rare minor allele has a maximum
at some intermediate pool size.

Initially, we consider a model in which there are at most two different alleles
at a site. Without sequencing errors, this corresponds to the infinite sites model
(Balding, Bishop and Cannings , 2008). Assume that sequencing errors do not
introduce a third base. This simplifies the real situation of three possible wrong
choices for any nucleotide, but will be generalized for our simulations. The major
allele is defined to be the allele with the largest number of reads in the sample
as a whole. As we are interested in loci where the frequency of the minor allele is
small, we can reasonably neglect the possibility that the major allele is not correctly
identified. The other allele is the prospective minor allele.

Consider a given site. Let Ri be the total number of reads for that site in
lane i and R=(R1,R2, . . . ,Rk) the vector of the number of reads for all k lanes. By
assumption the Ri are independent and identically Poisson(λ) distributed. Let Xi be
the number of reads of the prospective minor allele from lane i and
X = (X1,X2, . . . ,Xk). Define Ai to be the number of individuals with the minor
allele in lane i and A = (A1,A2, . . . ,Ak). Note that Ai ∼Bin(m, p) for a pool of size
m. Let B be the total number of individuals with the minor allele, i.e., B = ∑k

i=1 Ai.
We observe X and R.

Suppose that there is no-one with the minor allele in a pool. Hence, the num-
ber of reads of the prospective minor allele is simply the number of errors in that
lane. Given Ri = r, Xi has a binomial(r,ε) distribution. Since Ri has a Poisson dis-
tribution with expected coverage λ, Xi has a Poisson(λε) distribution. Now suppose
that there are a individuals with the minor allele in a pool, a∈ {1,2, . . . ,m}. Assume
that each individual contributes a large, equal amount of DNA. Hence, reads are ob-
tained by binomial sampling from the pool. The empirical results of Kenny et al.
(2011) show that this is a reasonable assumption. The distribution of Xi given Ri = r
and Ai = a is the binomial(r,q(a;ε)) distribution, where q(a;ε) = a(1−ε)

m + ε(m−a)
m .

Hence, Xi has a Poisson(λq(a;ε)) distribution. Note that if ε is small in comparison
to 1/m, then for a ≥ 1, q(a;ε)≈ a/m.
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3 A Likelihood Ratio Test

In this section, we derive a likelihood ratio test (LR test) of the null hypothesis
that the reads of the prospective minor allele are purely due to sequencing er-
rors. We treat the number of reads from a lane as an ancillary statistic (Lehmann
, 1986, Chapter 10, Section 2). Hence, we compute our likelihoods conditional on
R1, . . . ,Rk. Under the alternative hypothesis, the likelihood function is also condi-
tional on the (unobserved) number of individuals with the minor allele in each lane.
Firstly, we consider the likelihood of the number of reads of a prospective minor
allele from a single lane. Under the null hypothesis, we have

L0(xi|Ri = ri) =

(
ri

xi

)
εxi(1− ε)ri−xi . (1)

Similarly, under the alternative hypothesis and conditional on Ai

L1(xi|Ai = ai,Ri = ri) =

(
ri

xi

)
[q(ai;ε)]xi[1−q(ai;ε)]ri−xi , (2)

where Ai ∼ Bin(m, p). In the case Ai = 0, this is simply the likelihood under the
null hypothesis.

Multiplying the null likelihoods for each lane, the denominator of the like-
lihood ratio is

k

∏
i=1

L0(xi|Ri = ri) = ε∑k
i=1 xi(1− ε)∑k

i=1(ri−xi)
k

∏
i=1

(
ri

xi

)
. (3)

Assume that the pools are obtained by independent binomial sampling from a large
population where the minor allele frequency is p, the numerator of the likelihood
ratio is given by

k

∏
i=1

L1(xi|Ri = ri) =
k

∏
i=1

m

∑
ai=0

L1(xi|Ai = ai,Ri = ri)P(Ai = ai)

=
k

∏
i=1

m

∑
ai=0

(
m
ai

)
pai(1− p)(m−ai)

(
ri

xi

)
[q(ai;ε)]xi[1−q(ai;ε)]ri−xi . (4)

Setting p = 0, we obtain the likelihood under the null hypothesis.
We now maximize the numerator with respect to the parameter p and com-

pute the likelihood ratio. This leads to

T =
maxp ∏k

i=1 ∑m
ai=0

(m
ai

)
pai(1− p)(m−ai)[q(ai;ε)]xi[1−q(ai;ε)]ri−xi

ε∑k
i=1 xi(1− ε)∑k

i=1(ri−xi)
. (5)

By taking logarithms, we get the LR test statistic 2 log(T ).
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Under suitable regularity conditions, the asymptotic properties of likelihood
ratio tests are well understood. In such a situation, the null distribution of 2 log(T )
would be approximately chi-square with one degree of freedom (see for instance
Chapter 4 in Davison , 2008). However, these regularity assumptions are not sat-
isfied, as the null value of the parameter p lies at the boundary of the parameter
space. We will thus also obtain critical values for the test via simulations.

Note: It should be noted that this test can be adapted to the case where an
estimate of the error probability is given for each read. In this case, define εi, j to
be the estimate of the error probability for the j-th read from lane i. Let Yi, j be a
0-1 random variable, such that Yi, j = 0 when the j-th read from lane i indicates the
major allele and Yi, j = 1 when the j-th read from lane i indicates the prospective
minor allele. Define Yi = (Yi,1,Yi,2, . . . ,Yi,Ri). The likelihood of the reads from lane
i under the null hypothesis is given by

L0(yi|Ri = ri) =
ri

∏
j=1

(1− εi, j)
1−yi, jεyi, j

i, j .

Under the alternative hypothesis, the likelihood of the reads from lane i conditional
on the number of individuals in the lane with the minor allele is given by

L1(yi|Ai = ai,Ri = ri) =
ri

∏
j=1

[1−q(ai;εi, j)]
1−yi, j [q(ai;εi, j)]

yi, j .

Arguing as in the case where the probability of error is constant, the likelihood ratio
is given by

T =
maxp∏k

i=1∑m
ai=0

[(m
ai

)
pai(1−p)m−ai

(
∏ri

j=1[1−q(ai;εi, j)]
1−yi, j [q(ai;εi, j)]

yi, j

)]
∏k

i=1 ∏ri
j=1(1− εi, j)1−yi, jεyi, j

i, j

.

4 A Simple Test for the Presence of a Minor Allele -
The Maximum Test

An intuitive alternative to the LR test is to accept that there is a minor allele when
any of the lanes gives a sufficiently large number of reads of such an allele. Define
Uk = max1≤i≤k Xi, i.e., Uk is the maximum number of reads of a prospective minor
allele from a lane. Under H0 and the model presented in Section 2, Uk is the max-
imum of k independent observations from a Poisson(λε) distribution. To control
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the probability of a type I error, the critical value, uk, is defined to be the smallest
integer satisfying

P(Uk ≤ uk|H0)≥ 1−α⇒P(Xi ≤ uk|H0)
k≥1−α⇒P(Xi ≤ uk|H0)≥ k

√
1−α. (6)

Hence, we can take uk to be the k
√

1−α quantile of the Poisson(λε) distribution.
We reject H0 if and only if Uk > uk. Since k

√
1−α is increasing in k, it follows

that uk is non-decreasing in k (given the remaining parameters are fixed). Also, the
critical value is non-decreasing in the error rate.

Another way of obtaining this test is to construct a multiple hypothesis test
that controls the familywise error using the k test statistics X1,X2, . . . ,Xk. For small
α, the critical value can be accurately approximated using a significance level of
α/k, i.e., using the Bonferroni procedure. The resulting test controls for multiplicity
across lanes, but not across loci. One might therefore use an additional procedure
that controls the familywise error or the false discovery rate across loci (Benjamini
and Hochberg , 1995).

In Section 5, we investigate this test under more general assumptions con-
cerning the sequencing errors.

4.1 Estimation of the Power for Small p

Now we consider the distribution of the statistic Uk used with the maximum test.
Our focus is on the alternative hypothesis that the minor allele frequency is p,
where p is small. The number of individuals with the minor allele in the sam-
ple, B = ∑k

i=1 Ai, has a binomial distribution with parameters n and p. This can be
approximated by the Poisson(np) distribution.

Lemma 1. Suppose the pool size is fixed and ignore the possibility of errors.
Assume there are b individuals with the minor allele in the sample. The distribution
of the maximum number of reads of a minor allele across all lanes is stochastically
smallest when one individual with the minor allele appears in each of b lanes.

Proof. Assume there are b individuals with the minor allele in the sam-
ple, who appear in l lanes, where l ≤ b. Let 1(b) be a vector of ones of length b.

Let a(b) = (a(b)1 ,a(b)2 , . . . ,a(b)l ), where the a(b)i are positive integers that sum to b.
Suppose we relabel the lanes in order of the number of individuals with the minor
allele (lane 1 has the maximum number of individuals with the minor allele). Simi-
larly, the individuals with the minor allele are labeled according to the lane number,
i.e., if A = a(b), then the individuals with the minor allele in lane 1 are numbered
from 1 to a(b)1 , those in lane 2 are numbered from a(b)1 + 1 to a(b)1 + a(b)2 etc. Let

c(b)i = ∑i
j=1 a(b)j be the number of individuals with the minor allele in the first i

lanes labeled in this way. Set c(b)0 = 0.
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Let Vj be the number of reads from the j-th individual with the minor allele.
Hence, Vj ∼ Poisson(λ/m). We show that Ul|A = a(b) stochastically dominates
Ub|A = 1(b), i.e., P(Ul ≥ u|A = a(b)) ≥ P(Ub ≥ u|A = 1(b)). The number of reads

of the minor allele from lane i, 1 ≤ i ≤ l, when A = a(b) is Yi = ∑
c(b)i

j=c(b)i−1+1
Vj. As

the Vj are non-negative, for any set of realizations of V
c(b)i−1+1

,V
c(b)i−1+2

, . . . ,V
c(b)i

, this

sum will be greater than or equal to max
c(b)i−1+1≤ j≤c(b)i

{Vj}. Hence, ∑
c(b)i

j=c(b)i−1+1
Vj

stochastically dominates max{V
c(b)i−1+1

,V
c(b)i−1+2

, . . . ,V
c(b)i

}. Taking the maximum of

the Yi, max1≤i≤l{Yi|A = a(b)} stochastically dominates max1≤ j≤b{Vj}, which is the
maximum number of reads of the minor allele in a lane when all b individuals with
the minor allele appear in different lanes. �

We can thus obtain a lower bound on the power of the test by assuming
that all the individuals with the minor allele appear in separate lanes. When the ex-
pected number of individuals with the minor allele is small compared to the number
of lanes, the probability of having several individuals with this allele in any lane is
small. Let D denote the event that the alternative HA : p > 0 is accepted. Condition-
ing on the number of individuals with the minor allele in the sample

P[D] =
∞

∑
b=0

P[D|B = b]P(B = b)≥
∞

∑
b=1

P[D|B = b]P(B = b). (7)

The approximation obtained by replacing the inequality by an equality is accurate,
since the probability of accepting the alternative given that no individuals with the
minor allele appear in the sample is simply the significance level of the test (which
by assumption is small). For b ≥ 1,

P[D|B = b] = P(U > uc|B = b) = 1−P(Uk ≤ uk|B = b)≥ 1−P(V1 ≤ uk)
b, (8)

where V1 is the number of reads from an individual with the minor allele. Replacing
this inequality by an equality leads to an accurate approximation when 1/m is large
compared with ε (i.e., the probability that the maximum number of reads of the
prospective allele comes from a lane where the minor allele is actually present is
close to 1) and the probability of obtaining multiple copies of the minor allele in a

lane is small. It follows that P[D|B = b]≈ 1− rb
k , where rk = ∑uk

j=0
e−λ/m(λ/m) j

j! .
Let µ be the expected number of individuals with the minor allele in the

sample, i.e., µ = np = mkp. It follows that for small p

P[D] ≈
∞

∑
b=1

e−µµb[1− rb
k ]

b!
=

∞

∑
b=1

e−µµb

b!
−

∞

∑
b=1

e−µ(µrk)
b

b!
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= (1− e−µ)− e−µ(1−rk)
∞

∑
j=1

e−rkµ(µrk)
b

b!

= (1− e−µ)− e−µ(1−rk)(1− e−rkµ) = 1− e−µ(1−rk).

4.2 Optimization of the Pool Size for a Fixed Number of Lanes

The goal is to maximize the power of the maximum test at a fixed significance level.
Result 1. Suppose that the number of lanes, k, is fixed. Let mk be the unique

solution of the following equation for m:

0 =
∞

∑
j=uk+1

e−λ/m(λ/m) j[1+λ/m− j]
j!

. (9)

Denote the pool size that maximizes the approximation of the power function by
m∗

k. When mk is a positive integer, m∗
k = mk, m∗

k = 1 when mk < 1, otherwise m∗
k is

either the integer part of mk, (
mk�) or one plus this integer part, �mk
, whichever
minimizes the function

fk(m; p,α) = e−µ(1−rk) = exp

[
−mkp

∞

∑
j=uk+1

e−λ/m(λ/m) j

j!

]
. (10)

Proof. Note that minimizing fk is equivalent to maximizing the approxima-
tion of the power function. Assuming that m can take any positive real value and
differentiating fk with respect to m,

f ′k(m; p,α) =− fk(m; p,α)kp
∞

∑
j=uk+1

e−λ/m(λ/m) j[1+λ/m− j]
j!

. (11)

Hence, fk has an extreme point if and only if Equation (9) is satisfied.
Note that λ/mk > uk, since the first term of the sum in Equation (9) must be

positive. Hence, at the optimal pool size (maximizing over the set of positive reals),
the expected number of reads from an individual is greater than the critical value
for the test.

Since η = g(m) = λ/m is a monotone function of m mapping (0,∞) onto
(0,∞), to show that there is a unique solution of Equation (9), it suffices to show
that there is a unique solution of the following equation in η:

hk(η) =
∞

∑
j=uk+1

P(W = j)[η+1− j] = 0, (12)

where W ∼ Poisson(η). Differentiating hk and rearranging, we obtain h′k(η) =
(η−uk)P(W = uk). If η ≤ uk, then hk(η) < 0. Also, h′k(η) > 0 for all η > uk and
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limη→∞ hk(η)> 0. It follows from the continuity of hk that there is a unique value
ηk which satisfies Equation (12). Hence, there is a unique extreme point of the
function fk(m) when m = mk = λ/ηk.

From the above analysis, when m < mk, i.e., η > ηk, f ′k(m; p0,α) < 0 and
when m > mk, i.e., η < ηk, f ′k(m; p0,α) > 0. Hence, the extreme point of fk is a
minimum as required.

If mk is a positive integer, then from the form of fk, it must be the integer
pool size which maximizes the approximation of the power given above. If mk < 1,
then a pool size of 1 maximizes the approximation of the power. If mk is a non-
integer greater than 1, then the integer pool size that maximizes the approximation
of the power must be either 
mk� or �mk
. �

As argued above, this estimate of power is accurate when the frequency of
the minor allele is small enough to ensure that it is unlikely that several individuals
with the minor allele appear in the same pool. Moreover, simulations indicate that
in practice this estimate of the power is accurate even when this assumption does
not hold. Note that mk is independent of p. Hence, it is reasonable to use m∗

k as
the optimal pool size for the detection of SNPs when the minor allele has a low
frequency, i.e., as the asymptotically optimal pool size.

There may be two neighboring integers maximizing this estimate of the
power. This occurs only when fk(
mk�; p,α) = fk(�mk
; p,α). In this case, we
take the optimal pool size to be 
mk�. We now describe the relation between m∗

k
and the number of lanes. Recall that the critical value uk is non-decreasing in k.

Result 2. a) The asymptotically optimal pool size for SNP detection depends
on k only through the critical value uk, b) mk is non-increasing in k.

Proof. To prove a), it suffices to show that when uk = uk+1 = c, then m∗
k =

m∗
k+1. In this case, from Equation (10) we obtain fk+1(m; p,α)=[ fk(m; p,α)]1+1/k.

Hence, minimizing fk(m; p,α) is equivalent to minimizing fk+1(m; p,α).
To prove b), first note that when uk+1 = uk, it follows from the above argu-

ment that mk+1 = mk. Since uk is non-decreasing in k, it suffices to consider the
case uk+1 = uk +1. From Equation (12),

hk(η)−hk+1(η) =
∞

∑
j=uk+1

P(W = j)[η+1− j]−
∞

∑
j=uk+2

P(W = j)[η+1− j]

= (η−uk)P(W = uk +1),

where W ∼ Poisson(η) and η = λ/m is the expected number of reads from an
individual in a pool of size m. By definition hk(ηk) = 0 and, as argued previously,
ηk > uk. It follows that

hk+1(ηk) = (uk −ηk)P(W = uk +1)< 0. (13)
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Differentiating hk+1, we obtain

h′k+1(η) = [η−uk −1]P(W = uk +1). (14)

Since the first term in the sum defining hk+1(ηk+1) must be positive, there
is no solution of hk+1(η) = 0 with η ∈ (0,uk +1). Let ηk = max{ηk,uk +1}. Thus
hk+1(ηk)< 0. For η > ηk, hk+1(η) is increasing in η and limη→∞ hk+1(η)> 0.

It follows that there is a unique positive solution, ηk+1, of the equation
hk+1(η) = 0 and ηk+1 > ηk. Hence, mk+1 = λ/ηk+1 < mk = λ/ηk. �

The second result given above suggests the following conjecture:
Conjecture 1. The asymptotically optimal pool size for detecting SNPs is

non-increasing in the number of available lanes (all other parameters fixed).
Since the critical value of the test is non-decreasing in the error rate, the

proof of the second result above also suggests the following conjecture:
Conjecture 2. The optimal pool size for detecting SNPs is non-increasing

in the error rate (all other parameters fixed).
These conjectures seem difficult to prove due to the complexity of dealing

algebraically with integer parts when analyzing the functions fk and fk+1. How-
ever, no counterexamples to these conjectures have been found in the numerous
calculations that have been carried out.

Suppose a decrease in the error rate leads to a lower critical value. The opti-
mal power to detect a rare minor allele must increase. This follows from observing
that if we do not change the pool size, then the probability that the maximum num-
ber of reads from an individual with the minor allele exceeds the critical value must
increase. A further increase in power is possible, if the change in the critical value
changes the optimal pool size. Example 1 illustrates how an optimal pool size can
be calculated in practice.

It should be noted that it is difficult to adapt this test to the case where the
error probability is variable. In this case, ε should be interpreted as an upper bound
on the probability of an error (see also the results from the simulations presented in
Section 5).

4.3 Other Problems

Having determined the asymptotically optimal pool size given a fixed number of
lanes, we now consider the following two problems:

1 Given a fixed number of lanes, what is the minimum minor allele frequency that
can be detected with the required power?

2 What is the minimum number of lanes that is required to detect a minor allele of
given frequency with the required power?
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First, assume that the number of available lanes, k, is fixed. Denote the
minimum minor allele frequency that can be detected with the required power β
using a significance level of α by pmin(k;β,α). In order to do this, we need to solve
1− fk(m∗

k; p,α) = β as an equation in p. This leads to

ln(1−β) =−m∗
kkpmin(k;β,α)[1− rk]⇒ pmin(k;β,α) =

− ln(1−β)
m∗

kk[1− rk]
. (15)

Now we allow the number of available lanes to vary. Denote the minimum
number of lanes required to detect a minor allele of frequency p with power β by
k(p;β,α). By definition

k(p;β,α) = min
k

pmin(k;β,α)≤ p. (16)

The problem is solvable, since pmin(k;β,α) can be found for k = 1,2,3, . . . in turn.
This calculation can be made more efficient using the fact that m∗

k and rk only de-
pend on k through the critical value of the test, which often does not change over a
wide range of k. This calculation is illustrated in Example 2.

Example 1. Suppose that 40 lanes are available, the mean number of reads
per lane is 20 and the error rate is 0.01. We derive an optimal pool size for detecting
SNPs using a significance level of 0.1% .

Under H0, the number of reads of the prospective minor allele in a lane has
a Poisson(0.2) distribution. The critical value for this test, u40, is thus the 40

√
0.999

quartile of this distribution. Hence, u40 = 4. We thus conclude that the site is a SNP
when there are at least 5 reads of a prospective minor allele in a lane.

To find the optimal pool size, we minimize the function

fk(m; p,α) = e−µ(1−rk) = exp

[
−mkp

∞

∑
j=uk+1

e−λ/m(λ/m) j

j!

]

= exp

[
−40mp

∞

∑
j=5

e−20/m(20/m) j

j!

]
.

This is equivalent to maximising

d(m) = m

[
1−

4

∑
j=0

e−20/m(20/m) j

j!

]
. (17)

In practice, it is simplest to maximize this function by calculating d(m) for integer
values of m using the fact that the expected number of reads, 20/m, from an indi-
vidual at the optimal pool size has to be greater than the critical value. It follows

12

Statistical Applications in Genetics and Molecular Biology, Vol. 11 [2012], Iss. 5, Art. 1

Brought to you by | University of Oulu
Authenticated | 130.231.102.177

Download Date | 2/21/13 12:44 PM



that the optimal pool size cannot be greater than 5. We can find the optimal pool
size by evaluating d(m) at decreasing integer values starting at this upper bound.
The optimal pool size is m∗

40 = 3. The minimum frequency that is detectable with a
power of 0.95 is given by

pmin(40;0.95,0.001) =
− ln(1−β)

40m∗
40[1− r40]

, (18)

where m∗
k = 3, u40 = 4 and thus

q40 = e−20/3
4

∑
j=0

(20/3) j

j!
≈ 0.2056. (19)

Hence,

pmin(40;0.95,0.001) =
− ln(0.05)

120×0.7944
≈ 0.0314. (20)

Table 1 gives results for various numbers of lanes, k, and error rates, ε.

Table 1: Critical values, optimal pool sizes and minimum detectable frequencies
with power 0.95 at a significance level of 0.1% . The mean read rate is 20.

k = 16 k = 40 k = 80 k = 120
ε = 0.01 uk=3,m∗=4, uk=4,m∗=3, uk=4,m∗=3, uk=4,m∗=3,

pmin=0.0637 pmin=0.0314 pmin=0.0157 pmin=0.0105
ε = 0.005 uk=3,m∗=4, uk=3,m∗=4, uk=3,m∗=4, uk=3,m∗=4,

pmin=0.0637 pmin=0.0255 pmin=0.0127 pmin=0.00849
ε = 0.002 uk=2,m∗=6, uk=2,m∗=6, uk=2,m∗=6, uk=3,m∗=4,

pmin=0.0482 pmin=0.0193, pmin=0.00964 pmin=0.00849
ε = 0.001 uk=2,m∗=6, uk=2,m∗=6, uk=2,m∗=6, uk=2,m∗=6,

pmin=0.0482 pmin=0.0193 pmin=0.00964, pmin=0.00643

Example 2. Suppose that a lane gives on average 20 reads with an error rate
of 0.01. We wish to find the number of lanes that are required to discover a minor
allele of frequency 1% with a power of 0.95 using a significance level of 0.1%.
Suppose that up to 1000 lanes could be used.

The critical value for the test with k lanes, uk, is given by the k
√

0.999 quartile
of the Poisson(0.2) distribution. It follows that for k ≤ 17, uk = 3, for 18 ≤ k ≤ 443,
uk = 4, for 444≤ k ≤ 1000, uk = 5. By calculating pmin(k;β,α) for the largest value
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of k for which a particular critical value holds, we can first find the interval in which
the solution must lie. For k ≤ 17, uk = 3 and m∗

k = 4. Hence,

pmin(17;0.95,0.001) =
− ln(0.05)

68[1− e−5 ∑3
j=0

5 j

j! ]
≈ 0.0599. (21)

Thus the number of lanes must be greater than 17. For 18 ≤ k ≤ 443, uk = 4 and
m∗

k = 3. Hence,

pmin(443;0.95,0.001) =
− ln(0.05)

443×3[1− e−20/3 ∑4
j=0

(20/3) j

j! ]
≈ 0.00284. (22)

It follows that the minimum number of lanes, k(0.01;0.95,0.001), must be between
18 and 443. The solution can be found by solving

pmin(k;0.95,0.001) =
− ln(0.05)

3k[1− e−20/3 ∑4
j=0

(20/3) j

j! ]
= 0.01. (23)

This leads to

k =
− ln(0.05)

3×0.7944×0.01
⇒ k = 125.71. (24)

Thus 126 lanes are required. With an Illumina genome sequencer an experiment
involves 8 lanes, making it natural to choose the number of lanes to be a multiple
of 8. Hence, we require 128 lanes, i.e., 16 gene sequencing experiments.

As expected, when the number of lanes increases, the minimum minor al-
lele frequency pmin(k;β,α) that is detectable with a given power tends to decrease.
From Equation (15), if the critical value of the test is constant over a range of k,
then pmin(k;β,α) is inversely proportional to the number of lanes. Note that the test
statistic comes from a discrete distribution and the significance level is controlled
to be ≤ α. Due to this, whenever the critical value increases, the actual signifi-
cance level of the test falls from close to α to something maybe relatively much
smaller. This causes a fall in power. One could avoid this problem by rejecting the
null hypothesis when U = uk with the appropriate probability to make the actual
significance level equal to α. However, due to philosophical issues related to such
a procedure, we do not investigate such tests. Adopting a multiple testing approach
based on the number of reads of the minor allele from each lane and the Benjamini-
Hochberg procedure (see Benjamini and Hochberg , 1995) would give an increase
in power, but does not solve the problem regarding the discrete nature of the test
statistic.
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5 Results from Simulations

To estimate the power of the test for a given read rate λ = 20, frequencies of the mi-
nor allele p∈{0.005,0.01,0.02,0.05}, number of lanes k∈{16,40,80,120} and error
probabilities ε∈{0.001,0.002,0.005,0.01}, we simulated 10,000 tests for each case.
In general, the number of individuals in a pool was varied from one to ten. It should
be noted that the asymptotically optimal pool size in the problems considered is
between three and six. The optimal pool size was taken to be the minimum pool
size for which the maximum power was obtained.

We also investigated a scenario which could be thought of as illustrating the
effect of amplifying a particular section of the genome when a small number of
lanes (only 8 in this case) are available. In this case, it was assumed that the read
rate is λ = 60.

It should be noted that the LR test requires numerical maximization to cal-
culate the likelihood ratio statistic. The numerator of this expression (see Equation
5) was calculated at a grid of 20 equally spaced points p = 0.003,0.006, . . .,0.06.
Further simulations indicate that increasing the density of grid points did not not
lead to any visible gain in power. We carried out simulations under three models:

Model 1 Any errors in reading the major allele give the minor allele and vice versa
(i.e., the model presented in Section 2).

Model 2 Any errors in reading an allele always give the same base, which is neither
the major nor the minor allele.

Model 3 An error is equally likely to give any of the three other possible alleles.

Note that the maximum test assumes that the expected number of reads from
a lane is known. For the purposes of the simulations, the maximum test was also
adapted so that λ is estimated from the data and then the appropriate critical value
calculated from this estimate. The LR test does not require estimation of λ.

5.1 Adaptation of the Tests to More General Models

Assume now that reads of all four nucleotides can be obtained, the probability of
an error and the minor allele frequency are small (≤ 0.01 and ≤ 0.1, respectively)
and the sample size is relatively large. Under these assumptions, we may assume
that the major allele obtains the greatest total number of reads with probability
essentially equal to one. Hence, we must decide which of the other three nucleotides
is the putative minor allele.

Using the maximum test, the non-major allele giving the largest number of
reads in a single lane is deemed to be the putative minor allele. For the LR test,
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we consider the 3 non-major alleles in turn. Each time, we classify the reads into
two groups: (a) reads of the allele under consideration, (b) all other reads (assumed
to be reads of the major allele). We then calculate the realization of the LR test
statistic corresponding to each of the non-major alleles. The putative minor allele
is defined to be the one for which the maximum is achieved. If this statistic exceeds
the appropriate critical value for the test, then we accept that the putative minor
allele is present.

Note 1: Due to the fact that we are taking the maximum of three test statis-
tics, there is an element of multiple testing in this approach. However, the three
test statistics obtained in this way will be highly correlated, making the problem
less serious. Furthermore, the proposed approach can be taken into account when
simulating critical values.

Note 2: Under such a procedure, in addition to the standard type I and II
testing errors, when a minor allele is present we may conclude that some other
non-major allele is present. Such an error will be referred to as a type III error.
The following condition must be satisfied for a type III error to be committed: the
realization of the test statistic corresponding to the allele in question must be greater
than both a) the critical value and b) the realization of the test statistic corresponding
to the actual minor allele. For the maximum test, under Model 1 the probability that
just the first condition is fulfilled is bounded above by α. In general, we expect that
the probability of a type III error will be small relative to the nominal significance
level.

5.2 Power of the Tests under Model 1

The results presented in Tables 2 and 3 compare some of the theoretical and empir-
ical results for the maximum test, together with the LR test, under the assumptions
of Model 1. It should be noted that the power of the LR test is given for the em-
pirically determined optimal pool size for that test (obtained by simulation with
a maximum pool size of 10). The empirical power of the maximum test is very
much in agreement with the theoretical calculations made in the previous section.
The estimates from these simulations tend to be slightly greater than the theoretical
estimates. This results from the facts that, firstly, these theoretical estimates were
obtained by ignoring errors of the major allele being read as the minor allele
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Table 2: Estimates of the maximum power and optimal pool sizes (in brackets)
under Model 1 with mean read rate λ = 20, together with theoretical estimates for
the maximum test (taken over pool sizes from 1 to 10, based on 10 000 simulations).

Theoretical k = 16 k = 40 k = 80
p = 0.01,ε = 0.01 0.3752 (4) 0.6145 (3) 0.8514 (3)
p = 0.01,ε=0.005 0.3752 (4) 0.6915 (4) 0.9048 (4)
p = 0.01,ε=0.002 0.4628 (6) 0.7885 (6) 0.9553 (6)
p = 0.02,ε = 0.01 0.6097 (4) 0.8514 (3) 0.9779 (3)
p = 0.02,ε=0.005 0.6097 (4) 0.9048 (4) 0.9909 (4)
p = 0.02,ε=0.002 0.7114 (6) 0.9553 (6) 0.9980 (6)
p = 0.05,ε = 0.01 0.9048 (4) 0.9915 (3) 0.9999 (3)
p = 0.05,ε=0.005 0.9048 (4) 0.9972 (4) 1.0000 (4)
p = 0.05,ε=0.002 0.9553 (6) 0.9996 (6) 1.0000 (6)

λ known k = 16 k = 40 k = 80
p = 0.01,ε = 0.01 0.3864 (4) 0.6252 (3) 0.8489 (3)
p = 0.01,ε=0.005 0.3825 (4) 0.6973 (4) 0.9065 (4)
p = 0.01,ε=0.002 0.4733 (6) 0.7995 (7) 0.9583 (7)
p = 0.02,ε = 0.01 0.6237 (5) 0.8624 (3) 0.9774 (3)
p = 0.02,ε=0.005 0.6218 (4) 0.9133 (4) 0.9923 (5)
p = 0.02,ε=0.002 0.7195 (6) 0.9603 (6) 0.9984 (7)
p = 0.05,ε = 0.01 0.9190 (4) 0.9934 (3) 1.0000 (3)
p = 0.05,ε=0.005 0.9074 (4) 0.9976 (4) 1.0000 (2)
p = 0.05,ε=0.002 0.9653 (6) 0.9997 (8) 1.0000 (3)

λ unknown k = 16 k = 40 k = 80
p = 0.01,ε = 0.01 0.3525 (5) 0.6212 (3) 0.8531 (3)
p = 0.01,ε=0.005 0.3784 (4) 0.6921 (4) 0.9098 (4)
p = 0.01,ε=0.002 0.4688 (7) 0.7981 (7) 0.9598 (6)
p = 0.02,ε = 0.01 0.5937 (4) 0.8586 (3) 0.9762 (3)
p = 0.02,ε=0.005 0.6108 (4) 0.9061 (4) 0.9911 (4)
p = 0.02,ε=0.002 0.7207 (6) 0.9567 (7) 0.9978 (4)
p = 0.05,ε = 0.01 0.9004 (4) 0.9926 (4) 1.0000 (3)
p = 0.05,ε=0.005 0.9090 (4) 0.9977 (4) 1.0000 (3)
p = 0.05,ε=0.002 0.9627 (6) 0.9998 (6) 1.0000 (3)
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and, secondly, the estimates were derived to be tight lower bounds on the power
when the minor allele frequency is small.

Table 3: Estimates of the maximum power and optimal pool sizes (in brackets)
under Model 1 for the LR test with mean read rate λ = 20 (taken over pool sizes
from 1 to 10, based on 10 000 simulations).

LR Test k = 16 k = 40 k = 80
p = 0.01,ε = 0.01 0.3450 (4) 0.6398 (4) 0.8684 (5)
p = 0.01,ε=0.005 0.3891 (5) 0.7097 (4) 0.9127 (4)
p = 0.01,ε=0.002 0.4833 (8) 0.7811 (7) 0.9576 (7)

p = 0.02,ε=0.01 0.5738 (4) 0.8846 (5) 0.9889 (5)
p = 0.02,ε = 0.005 0.6416 (8) 0.9328 (7) 0.9978 (8)
p = 0.02,ε=0.002 0.7446 (9) 0.9687 (10) 0.9993 (10)

p = 0.05,ε = 0.01 0.9253 (9) 0.9997 (10) 1.0000 (3)
p = 0.05,ε=0.005 0.9607 (10) 0.9999 (7) 1.0000 (4)
p = 0.05,ε=0.002 0.9805 (10) 1.0000 (9) 1.0000 (3)

In the majority of cases, the theoretically derived optimal pool size gave
the maximum power. The cases where the theoretically derived optimal pool size
differed from the empirically determined optimal pool size can be split into two
cases: i) a neighboring pool size gave a very similar power, ii) for a large minor
allele frequency and number of lanes, the power of the test is essentially 1 for a
large range of pool sizes. In this case, the optimal pool size from the simulation
was defined to be the smallest pool size for which the maximum power is achieved
and thus may be much smaller than the theoretically determined optimal pool size.
In these cases, the asymptotically optimal pool size also gave an estimated power
of 1.

It can be seen that when the expected number of reads must be estimated and
the number of lanes is low, the power of the maximum test is generally lower. This
is particularly noticeable when the error rate is relatively high. However, when the
number of lanes available is large, the need to estimate the read rate has no visible
effect on the power, since an accurate estimate of λ will be obtained. However, the
choice of the appropriate pool size may be a problem in this case.

Figures 1 and 2 give a comparison of the powers of the maximum test and
the LR test. In general, the powers of the two tests are comparable. However, a few
important details may be observed.
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Figure 1: Comparison of the power of the tests for various pool sizes, p = 0.01,
k = 80, ε = 0.001, α = 0.001, λ = 20. Based on 10,000 simulations.

0 1 2 3 4 5 6 7 8 9 10 11
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Pool Size

P
ow

er

Maximum
LR

Figure 2: Comparison of the power of the maximum test and the LR test for various
pool sizes, p = 0.005, k = 16, ε = 0.01, α = 0.001, λ = 20. Based on 10,000
simulations.
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1 Using the asymptotically optimal pool size, when the expected number of indi-
viduals with the minor allele is small (i.e., when p and k are relatively small),
the maximum test works well compared to the LR test. In such cases, the
maximum number of reads of the putative minor allele contains a very large
percentage of the information regarding the presence of a minor allele (see
Figure 2).

2 The discrete nature of the test statistic for the maximum test means that the power
is not a smooth function of the parameters. When an increase in the number
of lanes available, k, leads to an increase in the critical value of the test, the
power of the maximum test may fall. For example, when p = 0.005, k = 80
and ε = 0.002, the power obtained using the maximum test is greater than
the power obtained using the LR test. However, when the number of lanes
is increased to k = 120 (which increases the critical value for the maximum
test), the power obtained by the LR test is noticeably greater.

3 When km∗
k p is relatively large (i.e., more than a few individuals with the mi-

nor allele are expected at the optimal pool size), the empirical optimal pool
size for the LR test is greater than the asymptotically optimal pool size. In
such cases, for pool sizes up to the asymptotically optimal pool size, the two
tests have very similar powers. For larger pool sizes, the power of the maxi-
mum test slowly decreases, whilst the power of the LR test seems to increase
marginally before plateauing.

Of course, in practice, the pool size cannot be chosen to depend on the
(unknown) frequency of the minor allele.

5.3 Significance Level of the Tests under Model 1

Table 4 gives the actual significance level of the maximum test when the nomi-
nal significance level is 5% and estimates are based on averaging over a hundred
thousand simulations (10,000 for each pool size between 1 and 10). It should be
noted that from the form of the maximum test, the actual significance level is in-
dependent of the pool size. The actual significance level α can be calculated using
α = 1−P(X ≤ uk)

k, where X ∼Poisson(λε), uk is the critical value for the test and
k is the number of lanes. It should be noted that when an increase in the number
of lanes results in an increase in the critical value of the test, the actual signifi-
cance level may fall by a large factor. This is noticeable when the number of lanes
increases from 40 to 80 and the probability of an error is either 0.01 or 0.002.

The need to estimate the read rate, λ, generally has little influence on the ac-
tual significance level of the maximum test. The case k = 40,ε = 0.01 may indicate
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Table 4: Empirical significance levels with mean read rate λ = 20 and nominal
significance level 5%, together with the theoretical significance level for the maxi-
mum test. Since the actual significance level is independent of the pool size for the
maximum test, the estimates are obtained by averaging over 100 000 simulations.
The values given for the LR test are the maximum empirical significance levels ob-
served. It should be noted that for the LR test there is a clear positive correlation
between the pool size and the empirical significance level.

Maximum Test - Theoretical k = 16 k = 40 k = 80
ε = 0.01 0.0182 0.0449 0.0045

ε = 0.005 0.0025 0.0062 0.0123
ε = 0.002 0.0124 0.0307 0.0008

Maximum Test - Empirical k = 16 k = 40 k = 80
ε = 0.01 0.0185 0.0445 0.0045

ε = 0.005 0.0026 0.0063 0.0120
ε = 0.002 0.0120 0.0310 0.0009

Maximum Test - λ unknown k = 16 k = 40 k = 80
ε = 0.01 0.0181 0.0380 0.0049

ε = 0.005 0.0024 0.0066 0.0121
ε = 0.002 0.0132 0.0301 0.0008

LR Test - Empirical k = 16 k = 40 k = 80
ε = 0.01 0.0111 0.0125 0.0121

ε = 0.005 0.0056 0.0106 0.0092
ε = 0.002 0.0097 0.0085 0.0040

that when the actual significance level is close to the nominal significance level,
then estimation of λ may somewhat reduce the actual significance level. When
the actual significance level is low compared to the nominal level, the conditional
probability of the number of errors in a lane exceeding the critical value will be
positively associated with the mean number of reads observed in the lanes. This is
due to the fact that the critical value will not, in general, be affected by the mean
number of reads. When the actual significance level is close to the nominal signifi-
cance level, an increase in the mean number of reads may lead to an increase in the
critical value, which results in a lower conditional probability of rejecting the null
hypothesis.

It should be noted that both tests are clearly conservative. When Model 1 is
valid the maximum test is conservative by definition, due to the discrete nature of
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the test statistic. The actual significance level for the LR test is positively correlated
with the pool size, but is much less affected by changes in the number of lanes and
the error rate than the maximum test is.

5.4 The Case of a Small Number of Lanes and a High Read Rate

This scenario may well reflect practical cases where a small number of lanes are
available and a particular section of the genome is of interest. In this case, PCR am-
plification may be applied to that section of the genome, resulting in a particularly
high read rate.

Table 5 and Figure 3 compare the theoretical and empirical power of the
maximum test, together with the LR test. It should be noted that when the minor
allele frequency is 5%, it is quite probable that at the asymptotically optimal pool
size there will be more than one individual with the minor allele in at least one of
the lanes. However, the theoretical estimate of the power of the maximum test is
still reasonably accurate. It should be noted that in such cases the power of the max-
imum test is close to one. Essentially, the estimate of the power of the maximum
test is based on calculating an upper bound on the logarithm of the probability of
not detecting a minor allele. Hence, when this logarithm is large and negative, its
estimate does not have to be accurate in order to give an accurate estimate of the
power.

In all the cases the power of the LR test is slightly greater than the power
of the maximum test. Figure 3 illustrates the power of the tests for pool sizes up to
20. It can be seen that in this case the power of both tests seem to plateau once the
asymptotically optimal pool size has been exceeded.

5.5 Effects of Deviations from the Simple Model

A comparison of the powers of the tests under each of the models stated at the be-
ginning of Section 5 is presented in Table 6. In general, the powers obtained under
Model 2 are minimally lower than under Model 1. In the case of the maximum test,
they are very similar to the theoretical estimates of power. This slight fall in power
is due to the fact that mistakes in reading the major allele do not result in a read of
the minor allele.

Under Model 2, we are interested in the probability of stating that an allele
which is not the minor allele is actually present (a type III error). These probabilities
were all below 0.001 (the nominal significance level) and tend to decrease as: a)
the number of lanes increases, b) the minor allele frequency increases and c) the
probability of an error decreases.
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Figure 3: Comparison of the power of the maximum test and the LR test for vari-
ous pool sizes, p = 0.05, k = 8, ε = 0.005, α = 0.001, λ = 60. Based on 10,000
simulations.

Table 5: Estimates of the maximum power and optimal pool sizes under Model 1
with mean read rate λ = 60 and 8 lanes, together with theoretical estimates for the
maximum test (taken over pool sizes from 1 to 20, based on 10 000 simulations).

Theoretical ε = 0.01 ε = 0.005 ε = 0.002
p = 0.02 0.6213 (8) 0.6814 (10) 0.7561 (12)
p = 0.05 0.9117 (8) 0.9427 (10) 0.9706 (12)

Maximum Test ε = 0.01 ε = 0.005 ε = 0.002
p = 0.02 0.6484 (8) 0.7029 (10) 0.7707 (13)
p = 0.05 0.9318 (9) 0.9579 (11) 0.9813 (14)

LR Test ε = 0.01 ε = 0.005 ε = 0.002
p = 0.02 0.6386 (9) 0.7257 (15) 0.8099 (20)
p = 0.05 0.9649 (20) 0.9850 (20) 0.9931 (20)

Note that when there is no minor allele, Model 2 is identical to Model 1.
Hence, the actual significance levels of the maximum and the LR test will be the
same under Model 2 as under Model 1.

When there is no minor allele, the maximum of the number of reads from
the non-major alleles taken over all the lanes is stochastically dominated by the
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Table 6: Comparison of the results obtained under the three models with mean read
rate λ = 20 (taken over pool sizes from 1 to 10, based on 10 000 simulations). Un-
less otherwise stated, the figures given are powers and optimal pool sizes (given in
brackets) when p = 0.02. The significance levels are given for a nominal signifi-
cance level of 5%. Note that the actual significance levels are identical for Models
1 and 2.

Theoretical k = 16 k = 40 k = 80
ε = 0.01 0.6097 (4) 0.8514 (3) 0.9779 (3)

ε = 0.002 0.7114 (6) 0.9553 (6) 0.9980 (6)

Sig. level, ε = 0.01 0.0182 0.0449 0.0045

Maximum Test - Model 1 k = 16 k = 40 k = 80
ε = 0.01 0.6237 (5) 0.8624 (3) 0.9774 (3)

ε = 0.002 0.7195 (6) 0.9603 (6) 0.9984 (7)

Sig. level, ε = 0.01 0.0185 0.0445 0.0045

Maximum Test - Model 2 k = 16 k = 40 k = 80
ε = 0.01 0.6017 (4) 0.8481 (3) 0.9784 (3)

ε = 0.002 0.7116 (6) 0.9571 (7) 0.9985 (6)

Maximum Test - Model 3 k = 16 k = 40 k = 80
ε = 0.01 0.6188 (4) 0.8555 (3) 0.9778 (3)

ε = 0.002 0.7205 (6) 0.9599 (6) 0.9986 (7)

Sig. level, ε = 0.01 0.0022 0.0054 0.0002

LR Test - Model 1 k = 16 k = 40 k = 80
ε = 0.01 0.5738 (4) 0.8846 (5) 0.9889 (5)

ε = 0.002 0.7446 (9) 0.9687 (10) 0.9993 (10)

Sig. level, ε = 0.01 0.0111 0.0125 0.0121

LR Test - Model 2 k = 16 k = 40 k = 80
ε = 0.01 0.5592 (3) 0.8647 (4) 0.9839 (4)

ε = 0.005 0.7285 (8) 0.9623 (10) 0.9990 (9)

LR Test - Model 3 k = 16 k = 40 k = 80
ε = 0.01 0.6792 (7) 0.9513 (9) 0.9981 (9)

ε = 0.005 0.7935 (10) 0.9835 (10) 0.9999 (9)

Sig. level, ε = 0.01 0.0263 0.0174 0.0239

corresponding maximum under Models 1 and 2. Hence, the actual significance
level for the maximum test is lower under Model 3 than under Model 1 or 2. It
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should be noted that the empirically derived actual significance levels of the LR
test under Model 3 are similar to the ones obtained under Models 1 and 2 (and even
sometimes somewhat higher). This may be due to the fact that the likelihoods of the
data under both hypotheses will tend to be lower under Model 3 than under Model
1 and hence the distribution of the test statistic may well be relatively unaffected.

The estimated power of the maximum test under Model 3 is similar to
(marginally lower than) the power obtained under Model 1. The probability of a
type III error is lower than under Model 2, as the number of reads of each of the
non-present alleles is stochastically dominated by the total number of errors ob-
tained under Model 2, which are assumed to give the same base.

The powers obtained under Model 3 using the LR test are visibly higher
than under Models 1 and 2. This increase in power seems to be of the same order
as the increase obtained under the maximum test when the probability of an error
is decreased by a factor of three. It should be noted that, in practice, sequencing
errors may not be independent and may well point to the same incorrect nucleotide.

5.6 Effect of Inaccurate Estimation of the Error Rate

Table 7 illustrates the effect of overestimating the error rate as 0.01 on the power
and actual significance level of the maximum test and the LR test. Comparing the
results with those given in Tables 2 and 3, the power is comparable to the case where
the true error rate is 0.01 and estimated correctly. In addition, the test becomes very
conservative. Hence, it can be seen that the maximum test can be adapted to a
variable error rate by using an upper bound on the probability of error. Although
some power may be lost, the type I error rate is controlled. Similar results were
obtained for the LR test. However, as mentioned before, the LR test can be easily
adapted to the case when quality scores are given for each read.

Table 8 illustrates the effect of underestimating the error rate on the power
and actual significance level of the maximum test and the LR test. In this case,
there is no control of the type I error rate. For both tests, the actual significance
level is increasing in the number of lanes used. In the case of the LR test, the actual
significance level is also increasing in the pool size.

5.7 Effect of the Overdispersion of the Number of Reads

As might be expected, an increase in the variability of the number of reads from a
lane has a negative effect on the power of the tests (see Table 9). This is more visible
in the case of the maximum test, which explicitly assumes that the number of reads
from a lane comes from the Poisson distribution. When the variance of the number
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Table 7: Effect of overestimation of the error probabilities, λ = 20 (pool sizes from
1 to 10, based on 10 000 simulations). Unless otherwise stated, the figures given
are powers and optimal pool sizes (given in brackets) for the given minor allele
frequency. The significance levels are given for a nominal significance level of 5%
and 0.1% . The true error rate is 0.001, the assumed error rate is 0.01.

Maximum Test k = 16 k = 40 k = 80
p = 0.01 0.3758 (4) 0.6193 (3) 0.8508 (3)
p = 0.02 0.6094 (4) 0.8541 (3) 0.9787 (3)
p = 0.05 0.9124 (4) 0.9925 (3) 1.0000 (3)

Sig. level, α = 0.05 0.00003 0.00006 0.00001
Sig. level, α = 0.001 0.00000 0.00000 0.00000

LR Test k = 16 k = 40 k = 80
p = 0.01 0.3388 (4) 0.6382 (4) 0.8564 (4)
p = 0.02 0.5677 (4) 0.8716 (4) 0.9866 (4)
p = 0.05 0.8950 (4) 0.9979 (6) 1.0000 (4)

Sig. level, α = 0.05 0.00000 0.00000 0.00000
Sig. level, α = 0.001 0.00000 0.00000 0.00000

of reads increases, the probability that the number of reads from an individual with
the minor allele exceeds the critical value falls (since at the optimal pool size the
critical value for the test must be smaller than the expected number of reads from an
individual). This results in a fall in power. On the other hand, the probability that
the number of errors from a lane exceeds the critical value increases as the variance
of the number of reads increases. Hence, the actual significance level of the test
is greater than the actual significance level of the test under Model 1. Note that in
the case where k = 40 and ε = 0.01, under Model 1 the actual significance level is
close to the nominal significance level. When the variance in the number of reads is
increased, the actual significance level may exceed the nominal significance level.
The LR test is less affected by the distribution of the number of reads, since the LR
statistic is calculated conditional on the number of reads from each lane. Thus there
is no explicit assumption regarding the distribution of the number of reads from
each lane. When the variance of the number of reads increases, the probability of
a small number of reads from a lane containing an individual with the minor allele
increases, which will decrease the power of the test. However, since the LR test
does not employ a fixed threshold rule, it is more flexible with regard to variation in
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Table 8: Effect of underestimation of the error probabilities, λ = 20 (pool sizes
from 1 to 10, based on 10 000 simulations). Unless otherwise stated, the figures
given are powers and optimal pool sizes (given in brackets) for the given minor
allele frequency. The significance levels are given for a nominal significance level
of 5% and 0.1% (maximum significance levels are given for the LR test) . The true
error rate is 0.01, the assumed error rate is 0.001.

Maximum Test k = 16 k = 40 k = 80
p = 0.01 0.4890 (6) 0.8115 (6) 0.9639 (6)
p = 0.02 0.7388 (7) 0.9650 (6) 0.9990 (6)
p = 0.05 0.9674 (7) 1.0000 (8) 1.0000 (3)

Sig. level, α = 0.05 0.2458 0.5064 0.7584
Sig. level, α = 0.001 0.0186 0.0443 0.0892

LR Test k = 16 k = 40 k = 80
p = 0.01 0.6799 (10) 0.9583 (10) 0.9990 (10)
p = 0.02 0.8861 (10) 0.9971 (10) 1.0000 (8)
p = 0.05 0.9963 (10) 1.0000 (7) 1.0000 (3)

Sig. level, α = 0.05 0.4428 0.7532 0.9491
Sig. level, α = 0.001 0.1781 0.4761 0.8075

the number of reads from individual lanes. The actual significance level of the LR
test is relatively unaffected by the variance of the number of reads.

6 Conclusion

This paper has considered a statistical model for the detection of SNPs using DNA
pooling. A simple test based on the maximum number of reads in a lane of a rarely
observed allele is presented. On the basis of this test, we derive optimal pool sizes
for the detection of rare alleles when the read rate is known. This test is compared
to a likelihood ratio test, which is based on the number of reads of a rarely observed
allele from each lane.

The actual significance level of these tests depends on how realistic the sim-
ple model presented in Section 2 is. However, more importantly, most deviations
from this model lead to the test becoming more conservative, but have very little
effect on the power of the test. It should be noted, however, that when the variance
of the number of reads is large in comparison to the Poisson distribution, then the
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Table 9: Effect of the overdispersion of the number of reads from a lane (pool sizes
from 1 to 10, based on 10 000 simulations). In the case of no overdispersion the
number of reads from a lane has a Poisson(20) distribution. The expected value
and variance of the number of reads in the case of overdispersion are 20 and 80,
respectively. Unless otherwise stated, the figures given are powers and optimal
pool sizes (given in brackets) when p = 0.02. The significance levels are given for
a nominal significance level of 5% (maximum significance levels are given for the
LR test).

Maximum Test - No overdispersion k = 16 k = 40 k = 80
ε = 0.01 0.6237(5) 0.8624(3) 0.9774(3)

ε = 0.002 0.7195(6) 0.9603(6) 0.9984(6)

Sig. level, ε = 0.01 0.0182 0.0449 0.0045
Sig. level, ε = 0.002 0.0124 0.0307 0.0008

LR Test - No overdispersion k = 16 k = 40 k = 80
ε = 0.01 0.5738(4) 0.8846(5) 0.9889(5)

ε = 0.002 0.7446(9) 0.9687(10) 0.9993(10)

Sig. level, ε = 0.01 0.0111 0.0125 0.0121
Sig. level, ε = 0.002 0.0097 0.0085 0.0040

Maximum Test - Overdispersion k = 16 k = 40 k = 80
ε = 0.01 0.5838(5) 0.8150(3) 0.9674(3)

ε = 0.002 0.6943(6) 0.9487(7) 0.9972(7)

Sig. level, ε = 0.01 0.0260 0.0641 0.0089
Sig. level, ε = 0.002 0.0138 0.0352 0.0010

LR Test - Overdispersion k = 16 k = 40 k = 80
ε = 0.01 0.5551(4) 0.8743(5) 0.9856(5)

ε = 0.002 0.7235(10) 0.9645(10) 0.9995(9)

Sig. level, ε = 0.01 0.0137 0.0106 0.0112
Sig. level, ε = 0.002 0.0081 0.0088 0.0071

maximum test becomes less conservative and in some cases the actual significance
level may exceed the nominal significance level.

The mathematical analysis presented generally assumes that the expected
number of reads per lane is known and the probability of an error is a known con-
stant. However, it was shown that the LR test can be adapted to practical cases,
where an estimate of the probability of an error is given for each read. In addition,
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the LR test does not use information regarding the expected number of reads. The
maximum test can be adapted to the case where the expected read rate is unknown
by calculating the critical value for the test based on the mean number of reads ob-
served per lane. When the number of available lanes is small, this has a negative
effect on the power of the maximum test. When the probability of an error is un-
known, in order to use the maximum test an upper bound on the error rate should
be used. This retains control of the probability of a type I error. In this case, the
power of the test will be similar to the power obtained when the probability of error
is equal to this upper bound.

In the case of Model 3 (when an error is made, each of the 3 possible nu-
cleotides are equally likely), the LR test works better than the maximum test. Look-
ing at these results more closely, it can be seen that the improvement is comparable
to the improvement made under the maximum test when the error rate decreases by
a factor of three. If it is felt that Model 3 (or a similar model) is a better description
of reality than Model 1, then we can adapt the maximum test to obtain such a gain
in power by taking the error rate to be the maximum of the probabilities of making
each particular type of error.

For Models 1 and 2, the power of the maximum test is comparable to the
power of the LR test. Using the asymptotically optimal pool size, the maximum
test tends to be the more powerful one when the expected number of individuals
with the minor allele is small (i.e., when the number of lanes and the minor allele
frequency are small). As the expected number of individuals with the minor allele
increases, a slight gain in power can be achieved using the LR test.

The simulations carried out in Section 5.4 give an indication of the practical
use of pooling when the expected number of reads per lane is large (this could be
the result of the PCR amplification of a particular section of the genome). Even
with a relatively small number of available lanes, pooling can be used to detect
minor alleles of frequency 2-5% with a high power. It is important to note that
in such cases the power of detecting such alleles plateaus at pool sizes above the
asymptotically optimal pool size. This means that when the cost of using extra
lanes is greater than the cost of increasing the sample size via an increased pool
size, one does not need a very accurate estimate of the optimal pool size in order to
choose a pool size. One could use a pool size somewhat greater than the estimate
of the asymptotically optimal pool size (i.e., such that the expected number of reads
from an individual is equal to [or slightly smaller than] the critical value of the
test based on an initial estimate of the read rate). The simulations also indicate
that the theoretical estimate of power gives a reasonable estimate of the empirical
power when such a pool size is used. It follows that although the concept of the
asymptotically optimal pool size has its limitations (e.g. it requires knowledge of
the read rate), it can be useful in estimating the power of detecting somewhat rare
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alleles (frequency 2-5%) in such practical problems using both the maximum test
and the LR test. Such estimation can also be adapted to estimating the power of the
LR test in detecting such alleles over a wider range of problems (e.g. when the read
rate is lower, but a larger number of lanes are available).

There are several ways in which the model presented here should be devel-
oped. Cutler and Jensen (2010) state that pooling leads to a loss of information,
in particular on linkage disequilibrium. Barcoding (see Craig et al. , 2008, Kenny
et al. , 2011) gives us data which are similar to the data obtained from sequenc-
ing individuals (albeit with a smaller number of reads per individual when pooling
is used). It also preserves information on linkage disequilibrium. However, this
comes at the cost of a more complex experimental procedure. Hence, an obvious
adaptation of this model would take into account the possibility and costs of bar-
coding, together with the costs of using each lane. Also, other information may be
useful, e.g. the cycle number of a site (see Druley et al. , 2009).

The model presented assumes that a) any read is equally likely to come from
each of the individuals whose material is in a lane, b) the error rate of the sequencer
is known and c) the number of reads comes from a Poisson distribution with known
expected value. Cutler and Jensen (2010) argue that it is difficult to obtain equal
concentrations of DNA from the individuals in a pool. However, the results of
Kenny et al. (2011) using barcoding and human DNA from Chromosome 1 show
that the assumption of equal amounts of probe material from each individual in a
pool may be reasonable. Lynch (2008) argues that estimation of the error rate is
difficult when it is relatively large compared to nucleotide diversity. However, as an
increasing number of sequencing experiments have been carried out, estimates of
the error rates using the Ewing and Green algorithm (see Ewing and Green , 1998)
have become more accurate. The third assumption seems the most problematic.
The expected number of reads may depend on the site (see Craig et al. , 2008,
Palmieri and Schlötterer , 2009). Also, when pooling is used in combination with
the PCR enrichment of chosen segments, the effect on the number of reads obtained
is unpredictable (see Sham et al. (2002), Kenny et al. (2011)). However, suppose
the read rate is large and the number of available lanes is small (which may well
be the case in practical applications). Simulations show that the empirical power
of the two tests is relatively unaffected by the pool size, as long as the pools are
sufficiently large

The analysis presented here shows that the use of a simple threshold rule to
detect SNPs is very efficient. Also, if we have information regarding the expected
number of reads of a site from a lane, then optimal pool sizes can be derived for the
detection of rare minor alleles. Further research should adapt this model to genetic
barcoding and uncertainty regarding the expected number of reads.
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7 Software

Software in the form of R code is available on request from the corresponding
author (david.ramsey@ul.ie).
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